

U W E H O F F M A N N

M AT H S C R A P B O O K
N O T E S A N D S O LV E D P R O B L E M S

http://xkcd.com/435/

http://xkcd.com/435/

Copyright © 2024 Uwe Hoffmann

Formatted with LATEX using the https://tufte-latex.github.io/tufte-latex/ template.

xkcd comics http://xkcd.com, used under CC license.

uwe@codemanic.com

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License (the
“License”); you may not use this file except in compliance with the License. You may obtain a copy of
the License at http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US. See the License for the
specific language governing permissions and limitations under the License.

Version February 2024

https://tufte-latex.github.io/tufte-latex/
http://xkcd.com
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Dedicated to my family, in appreciation of their love and support

Preface

Collection of math/cs notes and problems written up over the years
for my own amusement. Topics are at the undergraduate college level.
Normally notes like these would be written with a pencil in a note-
book. LaTeX makes it very easy to produce publishing quality type-
setting of mathematical texts, so blame LaTeX for this book. Hopefully
others will find some of these notes useful.

I’m an amateur but that hasn’t prevented me from enjoying writ-
ing these notes just as not being Michael Jordan has never prevented
me from enjoying pickup basketball. Describing and explaining has
helped me understand the topics involved. Errors and misunderstand-
ings are solely my fault. There is no original content in these notes and
I tried to be complete about attributions and citations but if I missed
something, I apologize.

Code snippets are mostly in Haskell and Mathematica. I’m not an
expert in either but they should work.

Contents

Preface 4

1 Airplane Seating 9

2 Schröder-Bernstein Theorem 11

3 Bridge Crossings 13

4 Cat vs Dog 17

5 Counting 28

6 Fibolucci 31

7 Grasshopper jumping 38

8 Groovy numbers 40

9 Devil’s chessboard 43

10 Maximum subsequence 52

6

11 Minkowski Sum & Well-spaced triples 55

12 No consecutive integers 58

13 Paying a dollar 62

14 Penn & Teller Full Deck of Cards 65

15 Points on circle 70

16 Prison Cells 75

17 0-1 Sequences 78

18 Last three digits before decimal point 81

19 How many trailing zeros in n! 85

20 Twelve Coins 88

21 Two decks of cards 97

22 While a 102

23 Divisible by three 111

24 Dutch National Flag 113

25 Bernoulli Inequality 117

7

26 Completeness 124

27 Enigma 130

28 Burnside Pólya Counting 142

29 Two algebraic delights 152

30 Bibliography 159

31 Index 161

1
Airplane Seating

Problem

A line of n airline passengers is waiting to board a plane. They
each hold a ticket to one of the n seats on that flight. (For
convenience, let’s say that the ith passenger in line has a ticket
for the seat number i.) Unfortunately, the first person in line is
crazy, and will ignore the seat number on their ticket, picking
a random seat to occupy. All of the other passengers are quite
normal, and will go to their proper seat unless it is already
occupied. If it is occupied they will then find a free seat to sit
in, at random. What is the probability that the last (nth) person
to board the plane will sit in their proper seat (#n)?

Any seat arrangement under the rules of the problem is a permuta-
tion π from the set Sn of permutations of size n. Let’s define An ⊆ Sn

the subset of permutations of size n that are valid seat arrangements.
Let Bn := {π ∈ An : π(n) = n} be the subset of An where the last

person gets their proper seat. A strategy to solve the problem would be
to count |An| and |Bn| and then divide them up to get the probability.

We will use the permutation cycle notation (i1, i2, . . . , ik) for a cycle
of length k that maps i1 7→ i2 7→ . . . ik 7→ i1. Also let ιn be the identity
permutation in Sn and let A∗n = An \ {ιn} and B∗n = Bn \ {ιn}.

Let’s characterize permutations in A∗n.

Lemma 1.1. A permutation π ∈ A∗n is a cycle of the form

π = (1, i1, i2, . . . , ik) with 2 ≤ i1 < i2 < . . . < ik ≤ n

Proof. Consider π ∈ A∗n. Suppose π(1) = 1 then under the rules of the
problem all other passengers can occupy their seat and π = ιn which
is a contradiction because A∗n doesn’t have the identity permutation.

10 math scrapbook

So there exists a i1 ∈ {2, . . . , n} with π(1) = i1. i1 cannot map to
any j < i1 because under the rules of the problem every j < i1 maps
to itself (every j < i1 finds their seat unoccupied so they take it). So
there exists a i2 ∈ {2, . . . , n} with i2 > i1 and i1 7→ i2. And so on.
This means that π has at least the cycle (1, i1, i2, . . . , ik) with 2 ≤ i1 <

i2 < . . . < ik ≤ n. It cannot have any other cycles that don’t have
1 in them because under the rules of the problem only passenger 1
can start a seat rearrangement and all passengers not affected by that
rearrangement will occupy their seat.

Definition 1.2. Let 2{2,...,n} be the set of all subsets of {2, . . . , n}. The
function φ : 2{2,...,n} → Sn is defined as:

φ(⊘) = ιn

φ({i1, i2, . . . , ik}) = (1, i1, i2, . . . , ik)

assuming 2 ≤ i1 < i2 < . . . < ik ≤ n

φ is a valid function because for each subset there is only one cycle
possible with the monotonically increasing ordering. From lemma 1.1
it then follows that φ(2{2,...,n}) = An, so |An| = 2n−1.

For Bn we apply the same arguments, except we take out the n-th
passenger. A permutation π′ ∈ B∗n is a cycle of the form

π′ = (1, i1, i2, . . . , ik) with 2 ≤ i1 < i2 < . . . < ik ≤ n− 1

and there is a function φ′ defined as

φ′(⊘) = ιn

φ′({i1, i2, . . . , ik}) = (1, i1, i2, . . . , ik)

assuming 2 ≤ i1 < i2 < . . . < ik ≤ n− 1

that defines a bijection from 2{2,...,n−1} to Bn. It means that |Bn| =
2n−2 for n ≥ 2.

So the probability that the last (nth) person to board the plane will
sit in their proper seat is |Bn |

|An | = 0.5 for n ≥ 2.

2
Schröder-Bernstein Theorem

Bijections from one-to-one functions are the topic1 in this note. The 1 Exercise 1.5.11 on page 32 from
Stephen Abbott. Understanding Analysis.
Springer, 2 edition, 2015. ISBN 978-1-
4939-2711-1.

problem statement is known as the Schröder-Bernstein Theorem.

Problem

Let f : X → Y and g : Y → X be one-to-one functions. Then
there exists a bijection h : X → Y.

X Y

A f(A)

f

f

g

Figure 2.1: A violates P(A)

The given functions are one-to-one, so for subsets f (X) and g(Y)
they are already bijections. This leads to the idea of partitioning X and
Y such that we can compose a bijection h piece-wise from f and g−1

using the partitions. In particular given a subset A ⊆ X, we consider
the sets A, X \ A, f (A), Y \ f (A) and g(Y \ f (A)). We want subsets
A ⊆ X, such that A ∩ g(Y \ f (A)) = ∅, as shown in figure 2.2. Let’s
define this as property P:

∀A ⊆ X : P(A)⇔ A ∩ g(Y \ f (A)) = ∅

X Y

A f(A)

f

f

g

Figure 2.2: A satisfies P(A)

If we have a subset A ⊆ X that satisfies P(A), then we can define
the bijection h:

h(x) =

 f (x) : x ∈ A

g−1(x) : x ∈ g(Y \ f (A))

The domain of h is A ∪ g(Y \ f (A)), which is not necessarily equal
to X, so we are not done yet. Our goal therefore is to find a subset
A ⊆ X that satisfies P(A) and for which A ∪ g(Y \ f (A)) = X.

Let

Λ = {A ⊆ X : P(A)}

12 math scrapbook

be the set of all subsets of X that satisfy property P and let Ā be the
union of all such subsets

Ā =
⋃

A∈Λ

A

Lemma 2.1. Ā is the biggest subset of X that satisfies P.

Proof. First we show that Ā satisfies P. Assume

∃y ∈ Y \ f (Ā) with g(y) ∈ Ā

Then there exists a set A ∈ Λ with g(y) ∈ A 2. A ⊆ Ā, so f (A) ⊆ f (Ā). 2 Because Ā =
⋃

A∈Λ.

Therefore Y \ f (Ā) ⊆ Y \ f (A), so y ∈ Y \ f (A). But this contradicts
A satisfying property P, so no such y exists. It follows that Ā satisfies
P too.

Assume there is a set A′ that satisfies P and that is bigger than Ā,
so Ā ⊆ A′. But A′ ∈ Λ and Ā =

⋃
A∈Λ, so A′ ⊆ Ā. That means

A′ = Ā.

With Ā we can define the partitions X = Ā ⊕ (X \ Ā) and Y =

f (Ā)⊕ (Y \ f (Ā)).

Lemma 2.2.
g(Y \ f (Ā)) = X \ Ā

Proof. Because Ā satisfies P, we already know that

g(Y \ f (Ā)) ⊆ X \ Ā

Now assume

∃x ∈ X \ Ā such that ∀y ∈ Y \ f (Ā) : g(y) ̸= x

But then Ā ∪ {x} satisfies P 3 and is bigger than Ā. This contradicts 3 We have

Y \ f (Ā ∪ {x}) ⊆ Y \ f (Ā)

so

∀y ∈ Y \ f (Ā ∪ {x}) : g(y) ̸∈ Ā ∪ {x}

lemma 2.1. So no such x exists and the lemma is proven.

We can now define the bjection h : X → Y with

h(x) =

 f (x) : x ∈ Ā

g−1(x) : x ∈ X \ Ā

which solves the problem in this section. 4 4 The solution uses a nifty proof strat-
egy: maximize a mathematical structure
so that its “complement” has no choice
but to satisfy a certain property, ie not
satisfying the property would contradict
the maximality.

3
Bridge Crossings

Problem

Four people begin on the same side of a bridge. You must send them across to the other side in the
fastest time possible. It is night. There is one flashlight. A maximum of two people can cross at a
time. Any party who crosses, either one or two people, must have the flashlight to see. The flashlight
must be walked back and forth, it cannot be thrown, etc. Each person walks at a different speed. A
pair must walk together at the rate of the slower person’s pace, based on this information: Person 1
takes t1 = 1 minutes to cross, and the other persons take t2 = 2 minutes, t3 = 5 minutes, and t4 = 10
minutes to cross, respectively.

Günter Rote1 gives a very elegant solution to this puzzle. 1 Günter Rote. Crossing the Bridge at
Night. World Wide Web, http://page.
mi.fu-berlin.de/~rote/Papers/pdf/

Crossing+the+bridge+at+night.pdf,
2002

How many ways are there to let n people cross the bridge under the
rules of the original puzzle ?

There are (n
2) ways to send the first pair over to the other side, there

are 2 ways to send the flashlight back with somebody from that side.
Now there are (n−1

2) ways to send the next pair over to the other side
from the remaining n− 1 people on this side and then there are 3 ways
to send the flashlight back with somebody from that side etc.

Using the basic product counting principle from combinatorics we
get the number of ways P to let n people cross the bridge

P =

(
n
2

)
2
(

n− 1
2

)
3
(

n− 2
2

)
4 . . . (n− 1)

(
2
2

)
= (n− 1)!

n−2

∏
k=0

(
n− k

2

) (3.1)

Taking the product from (3.1) and using the definition of a binomial
coefficient we get:

http://page.mi.fu-berlin.de/~rote/Papers/pdf/Crossing+the+bridge+at+night.pdf
http://page.mi.fu-berlin.de/~rote/Papers/pdf/Crossing+the+bridge+at+night.pdf
http://page.mi.fu-berlin.de/~rote/Papers/pdf/Crossing+the+bridge+at+night.pdf

14 math scrapbook

n−2

∏
k=0

(
n− k

2

)
=

n−2

∏
k=0

(n− k)!
2!(n− k− 2)!

(3.2)

With:

Pk =
(n− k)!

2!(n− k− 2)!
and

pk = (n− k)!
(3.3)

we get:

Pk =
pk

2!pk+2
(3.4)

The product of these Pk can now be simplified to:

n−2

∏
k=0

Pk =
n−2

∏
k=0

(n− k)!
2!(n− k− 2)!

=
1

(2!)n−1

n−2

∏
k=0

pk
pk+2

=
1

2n−1
p0

p2

p1

p3

p2

p4
. . .

pn−3

pn−1

pn−2

pn

=
1

2n−1
p0 p1

pn−1 pn

=
1

2n−1 n!(n− 1)!

(3.5)

Using (3.5) we get the solution

P =
n!((n− 1)!)2

2n−1 (3.6)

For four people this comes to an astonishing 108 ways to cross the
bridge under the rules of the puzzle.

Generating the ways

This section shows a small Haskell program that generates all the pos-
sible ways to cross the bridge. It has a helper function pairs that gener-
ates a list of all possible pairs from a set. It then defines two mutually
recursive functions bridgecrossleft and bridgecrossright for crossing the
bridge from the left side as pairs and for a flashlight carrier coming
back from the right. The functions pass along the states on the left
bank lbs and the right bank rbs. They generate all possible crossings
in their respective direction given the current state. For pairs crossing
from the left tuples have the respective pair and for people coming
back from the right tuples have the same person in both positions of
the tuple. The functions collect the resulting combinations in a list of
lists of tuples rs (Fig. 3.1). bridgecross is the main function taking a list

bridge crossings 15

and calling bridgecrossleft because we start on the left with all possible
ways of crossing of the first pair. bridgecrossleft

lbs rbs rs

bridgecrossright
lbs rbs rs

lbs
rbs

Figure 3.1: Two mutually recursive func-
tions bridgecrossleft and bridgecrossright.

Calling bridgecross [1, 2, 3] we get this result:

[
[(1 , 2) , (1 , 1) , (1 , 3)] ,
[(1 , 2) , (2 , 2) , (2 , 3)] ,
[(1 , 3) , (1 , 1) , (1 , 2)] ,
[(1 , 3) , (3 , 3) , (3 , 2)] ,
[(2 , 3) , (2 , 2) , (2 , 1)] ,
[(2 , 3) , (3 , 3) , (3 , 1)]

]

16 math scrapbook

Listing 3.1: Haskell code

p a i r s : : [a] −> [(a , a)]

p a i r s xs = l e t
rmap : : (a −> [a] −> [b]) −> [a] −> [b]

rmap f (x : xs) = (f x xs) ++ (rmap f xs)

rmap f [] = []

mpairs : : (a −> [a] −> [(a , a)])

mpairs x xs = map (\y −> (x , y)) xs

in rmap mpairs xs

b r i d g e c r o s s l e f t : : [Int] −> [Int] −> [(Int , Int)]
−> [[(Int , Int)]]

b r i d g e c r o s s l e f t l b s rbs r s
= i f (length l b s) >= 2 then

l e t
ps = p a i r s l b s
f = (\ (x , y) −>

(b r i d g e c r o s s r i g h t
(f i l t e r (\ z −> (z /= x)

&& (z /= y)) l b s)
(x : y : rbs) (r s ++ [(x , y)])))

in f o l d l (++) [] (map f ps)
e lse [r s]

b r i d g e c r o s s r i g h t : : [Int] −> [Int] −> [(Int , Int)]
−> [[(Int , Int)]]

b r i d g e c r o s s r i g h t l b s rbs r s
= i f (length l b s) > 0 then

l e t
f = (\ x −>

(b r i d g e c r o s s l e f t (x : l b s)
(f i l t e r (\ z −> (z /= x)) rbs)

(r s ++ [(x , x)])))
in f o l d l (++) [] (map f rbs)

e lse [r s]

br idgecross : : [Int] −> [[(Int , Int)]]

br idgecross xs = b r i d g e c r o s s l e f t xs [] []

4
Cat vs Dog

Bipartite graphs, network flows, matchings and vertex covers are
the topics of the problem 1 in this note. 1 Spotify. Cat vs dog. 2012. URL https:

//labs.spotify.com/puzzles/

Problem

The latest reality show has hit the TV: “Cat vs. Dog”. In this show, a bunch of cats and dogs compete
for the very prestigious Best Pet Ever title. In each episode, the cats and dogs get to show themselves
off, after which the viewers vote on which pets should stay and which should be forced to leave the
show.

Each viewer gets to cast a vote on two things: one pet which should be kept on the show, and one pet
which should be thrown out. Also, based on the universal fact that everyone is either a cat lover (i.e.
a dog hater) or a dog lover (i.e. a cat hater), it has been decided that each vote must name exactly
one cat and exactly one dog.

Ingenious as they are, the producers have decided to use an advancement procedure which guaran-
tees that as many viewers as possible will continue watching the show: the pets that get to stay will
be chosen so as to maximize the number of viewers who get both their opinions satisfied. Calculate
this maximum number of satisfied viewers.

At first glance this looks similar to a SAT problem 2, something like 2 Boolean satisfiability problem
http://en.wikipedia.org/wiki/

Boolean_satisfiability_problem
(c1 ∧ ¬d3), (c3 ∧ ¬d1), (d2 ∧ ¬c2), . . . where ci are the cats and dj are
the dogs. The goal would be to pick the biggest subset of boolean
expressions (votes) that are satisfied.

But SAT is about one boolean expression and about assigning val-
ues to boolean variables to satisfy it. Seems like SAT is fundamentally
different and not a good approach in solving this problem. What if
we want to visualize the boolean expressions and see the relationships
between them, i.e. which ones are in conflict. Conflict between two
boolean expressions means one expression has ci and the other ex-

https://labs.spotify.com/puzzles/
https://labs.spotify.com/puzzles/
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

18 math scrapbook

c1 ∧ ¬d3

c2 ∧ ¬d2

c4 ∧ ¬d1

c3 ∧ ¬d1

¬c2 ∧ d1

¬c4 ∧ d3

¬c1 ∧ d2

Cat lovers

Dog lovers

Figure 4.1: Votes form a bipartite graph.
A graph is bipartite if the vertex set is
partitioned into two subsets (blue and
green in this case) such that no vertices
in a subset are adjacent.

pression has ¬ci or one has dj and the other ¬dj. A good way to do
that is with a graph as in Figure 4.1. The nodes in the graph are the
boolean expressions and edges connect boolean expressions that are in
conflict.

It becomes apparent that the graph is bipartite with cat lovers on
one side and dog lovers on the other. That is good because a lot of
graph algorithms are much simpler and work faster if the graphs are
bipartite. But what algorithm should we use? We need to find the
biggest subset of nodes in the graph that are not in conflict.

Sometimes it’s easier to compute the complement of what we want:
the smallest subset of nodes that are involved in conflicts. Removing
these nodes and the edges they touch should leave us with a graph
with only nodes and no edges, i.e. only votes without conflicts. Be-
cause we strive to remove the smallest subset of conflicting nodes we
are left with the biggest subset of votes without conflicts.

The subset of nodes that are involved in conflicts is a vertex cover 3 3 A vertex cover is a subset of nodes such
that each edge in a graph is incident to
at least one vertex in the subset.

for our bipartite graph.
We need to compute a minimum vertex cover. This will be a good

excuse to learn about network flows in graphs, maximum flows and
minimum cuts. This delightful detour will eventually bring us to max-
imum matchings4 and then finally to minimum vertex covers. 4 A matching is a subset of edges such

that no two edges in the subset share a
vertex.

We begin with network flows in graphs. We work with a directed
graph G = (V, E) that has two special vertices s and t called source
and target. No edge goes into source and no edge comes out of target.

cat vs dog 19

We also have a function c : E → R≥0 that assigns a non-negative
capacity to each edge. The graph G together with source s and target
t and capacity function c form a network (G = (V, E), s ∈ V, t ∈ V, c).

u v
10/20

Figure 4.2: In figures we annotate an
edge with flow and capacity as shown
here. In this case f (u → v) = 10 and
c(u → v) = 20. If only one number is
annotating the edge then it’s the capac-
ity.

Definition 4.1. A function f : E → R≥0 is a flow through network
(G, s, t, c) if f satisfies the following constraints:

• capacity constraint: flow along an edge cannot exceed the capacity of
the edge

∀e ∈ E : f (e) ≤ c(e)

• conservation constraint: incoming flow into a vertex (except for source
and target) equals outgoing flow from the vertex

∀v ∈ V \ {s, t} : ∑
u

f (u→ v) = ∑
w

f (v→ w) s

v

u

t

20/20

0/10

20/100

0/10

20/20

Figure 4.3: Example network flow. Here
| f | = 20 and the whole flow is pumped
along the path s → u → v → t. In this
exampe f saturates s→ u and v→ t and
avoids s→ v and u→ t.

For notational simplicity we assume
functions f and c are defined on V × V
and f (u → v) = c(u → v) = 0 if u → v
is not an edge in G = (V, E).

Source s generates flow and target t consumes flow. The value of
flow f , denoted | f |, is defined as

| f | = ∑
w

f (s→ w) = ∑
v

f (v→ t)

Given a network (G, s, t, c) what is the maximum flow value that can
be pumped through it? Figure 4.3 shows a flow of value 20 through
an example network. It saturates the flow along one particular path
and avoids the other edges. Is 20 the maximum flow value that can
be achieved for this example network? Figure 4.4 shows the same
network but now with a flow of value 30. Can we do better than 30?
The answer is no, because that would exceed the outgoing capacity of
source s or the incoming capacity of t. s

v

u

t

20/20

10/10

10/100

10/10

20/20

Figure 4.4: Same example network with
a flow of value | f | = 30.

Our goal is to device an algorithm that constructs a flow with max-
imum value through a given network. To gauge the progress of our
algorithm we need an upper bound for the maximum flow value. As
said before the maximum value clearly cannot exceed the outgoing ca-
pacity of source s or the incoming capacity of t. But more generally
if we sever the ties between source and target along some subset of
edges such that there are no more paths from source to target then
the maximum flow value cannot exceed the capacity of the cut. This
seems like a useful concept to formalize.

Definition 4.2. In a network (G, s, t, c) a cut is a partition of the vertex
set V into two subsets S and T, such that V = S ∪ T, S ∩ T = ∅ and
s ∈ S, t ∈ T. The capacity of the cut (S, T), denoted ∥S, T∥, is defined
as

∥S, T∥ = ∑
v∈S

∑
w∈T

c(v→ w)

20 math scrapbook

Figure 4.5: Alexander Schrijver. On
the history of the transportation and
maximum flow problems. 2002. URL
http://homepages.cwi.nl/~lex/files/

histtrpclean.pdf:
Network flows and minimum cuts
played a role in the Cold War. The
figure is a schematic diagram of the
railway network of the Western Soviet
Union and Eastern European countries,
with a maximum flow of value 163,000

tons from Russia to Eastern Europe, and
a cut of capacity 163,000 tons indicated
as “The bottleneck”.

Theorem 4.3. With network (G, s, t, c), for any flow f and any cut (S, T)
we have

| f | ≤ ∥S, T∥
Furthermore equality holds if and only if f saturates every edge from S to T
and avoids every edge from T to S.

Proof.

| f | = ∑
w

f (s→ w) (by definition)

= ∑
w

f (s→ w)−∑
v

f (v→ s) (second sum terms are all zero)

= ∑
u∈S

(∑
w

f (u→ w)−∑
v

f (v→ u)) (flow conservation constraint)

= ∑
u∈S

(∑
w∈T

f (u→ w)− ∑
v∈T

f (v→ u)) (edges in S cancel each other out)

≤ ∑
u∈S

∑
w∈T

f (u→ w) (because f (v→ u) ≥ 0)

≤ ∑
u∈S

∑
w∈T

c(u→ w) (flow capacity constraint)

= ∥S, T∥ (by definition)
s

v

u

t

20/20

0/10

20/100

0/10

20/20

10

20

10

Figure 4.6: Dashed edges show how the
greedy s− t path flow can be augmented
and reversed in order to increase overall
flow.

Theorem 4.3 tells us that if we keep increasing a flow and/or de-
creasing a cut we should eventually meet at a maximum flow that
equals a minimum cut. But given a network how do we start? A first
valid flow is ∀e ∈ E : f (e) = 0. We could then try a greedy strategy.
Starting with source s find the path to t with the biggest capacity5 and 5 The capacity of a path is the minimum

over the capacities of the edges forming
the path.

pump as much flow as we can through it as illustrated in Figure 4.3.
Unfortunately we are stuck at that point. We cannot pump more flow
out of s on s → v because that would violate flow conservation at v
(we are at the maximum outgoing flow at v). The dashed edges in Fig-
ure 4.6 show some of our options. On edges where the current flow
leaves residual capacity we can pump more and on edges where there

http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf

cat vs dog 21

is existing flow we can reverse it. Again, this concept seems worth
formalizing.

Definition 4.4. A flow f in a network (G, s, t, c) induces a residual
network (G f , s, t, c f) with residual graph G f and residual capacity c f

in the following way:

• all vertices from G are vertices in G f , also source s and target t are
the same in G and G f

• if f (u→ v) > 0 then G f has an edge (v→ u) with capacity

c f (v→ u) = f (u→ v)

• if f (u→ v) < c(u→ v) then G f has an edge (u→ v) with capacity

c f (u→ v) = c(u→ v)− f (u→ v)

Figure 4.7 shows the residual network of our example network and
flow. We observe that there is a simple path6 s → v → u → t with 6 A simple path is a path where every

vertex on the path is visited only once.capacity 10 from source s to target t in the residual graph. This path
shows that there still is unused capacity for flow to be pushed from s
to t. A simple path from s to t in G f is called an augmenting path.

(a)

(b)

s

v

u

t

s

v

u

t

20/20

0/10

20/100

0/10

20/20

20

10

80 20

10

20

Figure 4.7:
(a) Example network with flow from Fig-
ure 4.3.
(b) Residual network (in blue) with
edges annotated with their residual ca-
pacity.

(a)

(b)

s

v

u

t

s

v

u

t

20/20

0/10

20/100

0/10

20/20

20/20

10/10

10/100

10/10

20/20

Figure 4.8:
(a) Example network with flow from Fig-
ure 4.3.
(b) Augmented flow (changed values in
red) from augmenting path s → v →
u→ t.

Theorem 4.5. Given is a flow f in network (G, s, t, c). If there is an aug-
menting path in G f with capacity F then the function f ′ : V × V → R≥0

defined as:

f ′(u→ v) =

f (u→ v) + F, if u→ v is on the augmenting path

f (u→ v)− F, if v→ u is on the augmenting path

f (u→ v), otherwise

is a valid flow in network (G, s, t, c) with | f ′| = | f |+ F.

Proof. We need to check the capacity constraint and the conservation
constraint.

Let’s start with the capacity constraint. The definition of f ′ has three
cases, so we check all three:

• Edge u→ v is on the augmenting path:

f ′(u→ v) = f (u→ v) + F (by definition)

≤ f (u→ v) + c f (u→ v) (by definition of F)

= f (u→ v) + c(u→ v)− f (u→ v) (by definition of c f)

= c(u→ v)

22 math scrapbook

• Edge v→ u is on the augmenting path:

f ′(u→ v) = f (u→ v)− F (by definition)

≥ f (u→ v)− c f (u→ v) (by definition of F)

= f (u→ v)− f (u→ v) (by definition of c f)

= 0

• Otherwise: In this case the flow of the edge hasn’t changed so ca-
pacity constraint is satisfied.

Next is the conservation constraint. For vertices not on the aug-
menting path flow in and out of them hasn’t changed, so conservation
constraint is satisfied there. For a vertex v on the augmenting path we
have four cases (since the augmenting path is simple and v ̸= s, v ̸= t):

• u → v on augmenting path and v → w on augmenting path: in
this case one incoming edge into v changed by F and one outgoing
changed by F, so conservation constraint holds for v

• u→ v on augmenting path and w→ v on augmenting path: in this
case two incoming edges into v changed, one by F and the other by
−F, so conservation constraint holds for v

• v→ u on augmenting path and w→ v on augmenting path: in this
case one incoming edge into v changed by −F and one outgoing
changed by −F, so conservation constraint holds for v

• v→ u on augmenting path and v→ w on augmenting path: in this
case two outgoing edges from v changed, one by −F and the other
by F, so conservation constraint holds for v

(a)

(b)

s

v

u

t

s

v

u

t

20/20

10/10

10/100

10/10

20/20

20

10

90 10

10

20

Figure 4.9:
(a) Example network with flow from Fig-
ure 4.4.
(b) Residual network (in blue) with
edges annotated with their residual ca-
pacity.

What happens when there is no augmenting path in G f ? As the
Figure 4.9 hints we then have a maximum flow (in our example | f | =
30). The next theorem proves it.

Theorem 4.6. Given is a flow f in network (G, s, t, c). If there is no aug-
menting path in G f then f is a flow with maximum value.

Proof. We define two subsets of V. The set S holds all the vertices of
V that are reachable from s in G f . Since there is no augmenting path
in G f we have t /∈ S. We also define T = V \ S. Clearly (S, T) is a
cut of our network. Also there is no G f edge u → v with u ∈ S and
v ∈ T because otherwise v would be reachable from somewhere in S
but v /∈ S, contradicting the definition of S. This means (by definition

cat vs dog 23

of G f) that f saturates every edge from S to T and avoids every edge
from T to S. According to Theorem 4.3 we then have | f | = ∥S, T∥
which means we have a maximum flow and minimum cut.

Delbert Ray Fulkerson was an American
mathematician who co-developed the
Ford–Fulkerson algorithm. https://en.
wikipedia.org/wiki/D._R._Fulkerson

We can now piece together the following algorithm known as the
Ford-Fulkerson algorithm:

Listing 4.1: Ford-Fulkerson algorithm

f = zero flow ;
Gf = r e s i d u a l graph of f in G;

while (e x i s t s augmenting path in Gf) :
pa = choose any augmenting path ;
f = augment f with pa ;
Gf = r e s i d u a l graph of f in G;

re turn f

Theorem 4.7. If the network has capacities in N≥0 then the Ford-Fulkerson
algorithm terminates and returns the maximum flow in the network.

Proof. We prove by induction that f : V × V → N≥0: The base case
is the zero flow which is in N≥0. Assume the current flow values
are in N≥0. The augmenting operation adds or subtracts a positive
integer value from the current flow values and conforms to capacity
constraints, so it keeps the augmented flow values in N≥0 which com-
pletes the induction.

The augmented flow f ′ modifies one outgoing edge from s by F > 0,
so by the definition of the value of a flow we have | f ′| = | f |+ F. This
means that augmenting strictly increases the value of the flow. We
also know that flow values have an upper bound (by Theorem 4.3 any
cut capacity is an upper bound). This means the algorithm has to
eventually reach the maximum flow and terminate.

https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/D._R._Fulkerson

24 math scrapbook

This concludes our detour into network flows7. 7 We have just scratched the surface
of the topic on network flows and
algorithms computing maximum flows
(an area of active research). For example
by making smart choices when choosing
the augmenting path we can improve
the runtime of the algorithm (also we
haven’t analyzed the runtime). What
happens when the capacities are not in
N≥0. For details on all this and more
see:
Jon Kleinberg and Eva Tardos. Algorithm
Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA,
2005. ISBN 0321295358

Jeff Erickson. Algorithms, Etc. 2015.
URL http://jeffe.cs.illinois.edu/

teaching/algorithms/.

We should bring it back to our problem and the associated bipartite
graph of conflicting votes. We want a minimal vertex cover and we
would like to use the just derived Ford-Fulkerson algorithm to com-
pute it. So we first have to transform our undirected bipartite graph
into a network.

We have an undirected bipartite graph G(V = X ∪ Y, E) with X ∩
Y = ∅ and E ⊆ X × Y (X could be the votes of cat lovers and Y the
votes of dog lovers in our problem or vice versa). We add a source s
and a target t and construct a network (G′, s, t, c) in the following way:

• vertex set of G′ is X ∪Y ∪ {s, t}

• ∀u ∈ X add a directed edge s→ u into edge set of G′

• ∀v ∈ Y add a directed edge v→ t into edge set of G′

• ∀{u, v} undirected edge in G with u ∈ X and v ∈ Y add a directed
edge u→ v into edge set of G′

• unit capacity8: ∀(u→ v) ∈ edge set of G′ : c(u→ v) = 1 8 Unit capacity has the advantage that a
flow either saturates the edge or avoids
it.With a network (G′, s, t, c) constructed from a bipartite graph G

as described above (an example is shown in Figure 4.10) we have an
equivalence between a matching in the bipartite graph and a flow in
the network. The next theorem states this.

(a)

(b)

s t

x1

x2

x3

x4

y1

y2

y3

1

1

1

1

1

1

1

1

1

1

1

1

1

x1

x2

x3

x4

y1

y2

y3

Figure 4.10:
(a) Bipartite graph
(b) Network constructed from it.

Theorem 4.8. A matching M in G induces a flow f in G′ such that | f | =
|M|. Conversely a flow in G′ induces a matching M in G such that |M| =
| f |.

Proof. (⇒) We have a matching M in G, i.e. a subset of edges that
don’t share a vertex. From the construction of G′ it follows that each
of the edges in M can be extended to paths from s to t which will only
meet in s and t. We define a function f that gives unit values to the
edges along these paths and zero value to all other edges. We claim
that f is a valid flow. It only assigns zero or unit values so it does
satisfy the capacity constraint in G′. The paths don’t intersect except
in s and t (because M is a matching), so for any vertex along the path
there is exactly one incoming edge with unit value and one outgoing
edge with unit value. The rest of the edges have value zero so don’t
play a role in conservation. This then means that the conservation
constraint is satisfied also and f is a flow. Each edge in M corresponds
to one of the paths, so there are |M| edges outgoing from s that have
unit value. Hence | f | = |M|.
(⇐) We have a flow f in G′. The flow either saturates or avoids an
edge. We define the subset M of edges that are saturated by f and are

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/

cat vs dog 25

between X and Y. We claim that M is a matching in G. Suppose it is
not a matching. Then there exists a vertex that is shared by two edges
in M. If this vertex is in X then it means it has two outgoing edges of
unit value but only one incoming edge of unit value (from s). If this
vertex is in Y then it means it has two incoming edges of unit value
and only one outgoing edge of unit value (to t). In either case this is
a contradiction to the conservation constraint of f . So M has to be a
matching. The size of M is by its definition equal to the number of
saturated edges from X to Y. But this number has to be equal to the
number of edges of unit value going out of s (conservation constraint).
Hence |M| = | f |.

Theorem 4.8 let’s us use the Ford-Fulkerson algorithm to compute
a maximum matching in our bipartite graph G. Once we have a max-
imum matching we get the size of a minimum vertex cover with the
following theorem, known as König’s theorem9: 9 For a short and elegant proof see:

Romeo Rizzi. A short proof of König’s
matching theorem. Journal of Graph The-
ory, 33(3):138–139, 2000. URL https://

math.dartmouth.edu/archive/m38s12/

public_html/sources/Rizzi2000.pdf

Theorem 4.9. In a bipartite graph G the size of a minimum vertex cover C
equals the size of a maximum matching M.

Proof. C is a vertex cover, so it covers all edges, which means it cer-
tainly covers a subset M of all edges. But M is a matching, so no two
edges share a vertex. It follows that |C| ≥ |M|.

From the maximum matching M we get the associated maximum
flow f as described in Theorem 4.8. The residual graph G′f of the
associated network cannot have any augmenting paths.

We consider the minimum cut (S, T) associated with the maximum
flow f . We define the following sets:

• XS = X ∩ S, XT = X ∩ T

• YS = Y ∩ S, YT = Y ∩ T

• H = {(u, v) edge in G : u ∈ S, v ∈ T}

• B = {v ∈ YT : ∃u ∈ XS with (u, v) edge in G}

• D = XT ∪YS ∪ B

D is a vertex cover: XT ⊆ D and YS ⊆ D, so D covers all edges that
have endpoints in XT or YS. The set B provides cover for H.

A vertex u ∈ XT is not reachable from s in G′f . It means that f
saturates s → u in G′, so the saturated edge s → u crosses the (S, T)
cut and counts towards ∥S, T∥.

A vertex v ∈ YS is reachable from s in G′f . It means that f saturates
v → t in G′ (otherwise some vertex from T would be reachable from
v and also from s in G′f which is a contradiction). The saturated edge
v→ t crosses the (S, T) cut and counts towards ∥S, T∥.

https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf

26 math scrapbook

S

T

s t

s t

S

T

(a)

(b)

(c)

Figure 4.11:
(a) A bipartite graph G(X ∪ Y, E). X are
green vertices, Y are red vertices.
(b) Maximum flow f (thicker arrows)
and minimum cut (S, T) in the corre-
sponding network G′. Thicker arrows
between green and red vertices form the
maximum matching.
(c) Same cut displayed with the corre-
sponding residual graph G′f .

f is a maximum flow so any edge from XS to YT is saturated and
counts towards ∥S, T∥.

∥S, T∥ = |XT |+ |YS|+ |H|

Figure 4.11 shows this. In (b) there are three saturated (thick) arrows
crossing the cut. The first two (counting from left to right) are due to
XT and the last one due to YS. In this example H is the empty set.

We have

|M| = | f | = ∥S, T∥ = |XT |+ |YS|+ |H| ≥ |XT |+ |YS|+ |B| ≥ |D|

D is a vertex cover and C is a minimum vertex cover, so |D| ≥ |C|. It
follows that |C| ≥ |M| ≥ |D| ≥ |C| which means |C| = |M|.

cat vs dog 27

This solves the problem in this note. The number of satisfied view-
ers is |V| − |M|, where V is the set of vertices in the bipartite graph G
of votes with their conflicts as edges and M is a maximum matching
in G computed with the Ford-Fulkerson algorithm taking advantage
of the min-max duality shown in Figure 4.12.

flow cut

matching vertex
cover

max flow = min cut

max matching = min cover

Figure 4.12: Min-max duality in bipartite
graphs and corresponding networks.

5
Counting

Countable sets and counting schemes for infinite countable sets are
the topics of the problem in this note.

Problem

Let P = {N ⊂N : N finite}. Prove P is countable.

Let’s revisit what it means for an infinite set to be countable: An
infinite set M is countable if there is a bijection 1 from M to N. 1 A bijection is a function that is one-to-

one and onto.Given this definition, the problem statement is quite remarkable:
the set of all the finite subsets of N is not “bigger” than N.

Our strategy will be to start smaller and prove certain subsets of P are
countable. We then expand it to P. We start by proving that the set of
all subsets of N of size two is countable. We actually will prove some-
thing stronger, namely the set of ordered pairs of natural numbers is
countable.

Theorem 5.1. The set of ordered pairs N×N is countable.
Mention puzzle 136 (Catching
a Spy) from Levitin: Algo-
rithmic Puzzles

Proof. We need a bijection from N×N → N. There are many ways
to do this 2.

2 A very elegant way is described
at http://www.math.upenn.edu/~wilf/

website/recounting.pdf

(1, 1) row 1

(1, 2), (2, 1) row 2

(1, 3), (2, 2), (3, 1) row 3

(1, 4), (2, 3), (3, 2), (4, 1) row 4
. . .

Figure 5.1: Counting all pairs.

The main idea we are going to use for our bijection is to order the
pairs (i, j) ∈N×N in rows, such that each pair in a row has the same
value when summing the components of the pair. Figure 5.1 illustrates
the idea. Row one has all pairs with components that sum up to two
(in this case only one pair). Row two has all pairs with components
that sum up to three, row three all pairs which sum to four, Notice
also that in a row the pairs are sorted in increasing order of the first
component.

http://www.math.upenn.edu/~wilf/website/recounting.pdf
http://www.math.upenn.edu/~wilf/website/recounting.pdf

counting 29

We count the pairs from left to right in each row and go down the
rows starting at the first row. For a given pair (i, j), how many pairs
come before it in our counting scheme? It is in row i + j− 1, so there
are k : 1 ≤ k < i + j− 1 rows before it. Each row k has k pairs in it.
This means there are

i+j−2

∑
k=1

k =
(i + j− 2)(i + j− 1)

2

pairs in rows before our pair (i, j). There are i− 1 pairs before (i, j) in
the same row. Therefore, our counting function is

f : N×N→N, f (i, j) = i +
(i + j− 2)(i + j− 1)

2

Suppose we have two pairs (i1, j1) ̸= (i2, j2). We have two cases:

• i1 + j1 = i2 + j2, same row, then i1 ̸= i2, so f (i1, j1) ̸= f (i2, j2)

• i1 + j1 ̸= i2 + j2, different rows, so f (i1, j1) ̸= f (i2, j2)

This means, f is one-to-one.
To prove that f is onto, we consider an arbitrary n ∈ N and find a

pair (i, j) with f (i, j) = n. Working backwards and assuming we have
a pair (i, j) with f (i, j) = n, it would fall on a row r = i + j− 1. In each
row k there are k pairs, n is on row r, so

r−1

∑
k=1

k =
r(r− 1)

2
< n ≤

r

∑
k=1

k =
r(r + 1)

2

Solving for r we have:3 3 Note that 1+
√

1+8n
2 − −1+

√
1+8n

2 = 1

r2 − r− 2n < 0, r2 + r− 2n ≥ 0, r =
⌈−1 +

√
1 + 8n

2

⌉
And then

i = n− r(r− 1)
2

, j = r− i + 1

This means that given an arbitrary n, there exists a pair (i, j) with
f (i, j) = n, so f is onto.

It follows that f is a bijection and N×N is countable.

A corrollary to Theorem 5.1 let’s us expand the countable subsets
of P even more.

Corollary. Set of all finite sequences of length k, Nk is countable.4 4 Nk is the set of sequences of length k,
or the cartesian product N×N× . . . N.
The set of pairs is N2 = N×N.Proof. Follows by induction on k: Assuming Nk−1 is countable, then

Nk = Nk−1 ×N

is also countable according to Theorem 5.1.

30 math scrapbook

From the corrollary we now know5 that the set of all subsets of N 5 We keep using the fact that the set of all
finite subsets of N of size k is a subset of
the set of all sequences of size k. To see
this impose an order on a set of size k
and you get a sequence.

of size k is countable (it’s a subset of Nk). The problem in this section
asks us to prove that P is countable, which means the union of all these
countable sets is countable. The next theorem will prove just that.

Theorem 5.2. Let An, n ∈N be countable sets. Then

∞⋃
n=1

An

is countable6. 6 Exercise 1.5.3 on page 30 from
Stephen Abbott. Understanding Anal-
ysis. Springer, 2 edition, 2015. ISBN
978-1-4939-2711-1.

Proof. An is countable, so there exists a bijection fn : N → An. We
already know that N×N is countable, so there exists a bijection g :
N→N×N.

We define F : N→ ⋃∞
n=1 An

F(n) = fi(j), where (i, j) = g(n)

We claim that F is a bijection.
Take n1 ̸= n2. Then g(n1) ̸= g(n2) and (i1, j2) ̸= (i2, j2), so

fi1(j1) ̸= fi2(j2)

It means F(n1) ̸= F(n2) and F is one-to-one.
Now pick an arbitrary a ∈ ⋃∞

n=1 An. Then there exists i ∈ N with
a ∈ Ai. 7 There also exists j ∈ N with fi(j) = a. The pair (i, j) is 7 We assume here the Ai are disjoint,

if not we make them disjoint and their
union stays the same.

in N×N, so there exists n ∈ N with g(n) = (i, j). It follows that
F(n) = a and F is onto.

Let us use this last theorem to prove the following statement8: 8 Exercise 0.0.1 on page xiii from T. Tao.
An Introduction to Measure Theory. Grad-
uate Studies in Mathematics. Ameri-
can Mathematical Society, 2021. ISBN
9781470466404. URL https://books.

google.com/books?id=k0lDEAAAQBAJ.

Theorem 5.3. If (xα)α∈A is a collection of numbers (xα) ∈ [0,+∞] such
that ∑α∈A xα < ∞, then xα = 0 for all but at most countably many α ∈ A,
even if A itself is uncountable.

Proof. We adopt the same definition of sum over the collection of num-
bers as in Terence Tao’s book:

∑
α∈A

xα = sup{∑
α∈F

xα : F ⊂ A, F finite}

For each n ∈N we define the subset An ⊂ A:

An = {α : α ∈ A, xα ≥
1
n
}

The sets An have to be finite because otherwise the sum ∑α∈An xα

would be an infinite sum of numbers not converging to zero, therefore
it would diverge which is a contradiction to ∑α∈A xα < ∞.

We also know that
⋃∞

n=1 An collect all the non-zero elements xα and
according to the previous theorem this union is countable.

https://books.google.com/books?id=k0lDEAAAQBAJ
https://books.google.com/books?id=k0lDEAAAQBAJ

6
Fibolucci

Exercise ‘Fibolucci’ in Programming, The Derivation of Algorithms1. 1 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

Problem

Write a program that calculates the function

f (n) =
n

∑
i=0

fib(i)fib(n− i), for n ≥ 0

where fib is the Fibonacci sequence defined by:

fib(0) = 0

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n), for n ≥ 0

To solve the Fibolucci sum we adopt the same notation used in Pro-
gramming in the 1990s2: The notation of function application is the 2 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

"dot" notation with name of function, followed by arguments, each
separated by a dot. The notation of quantified expressions has the op-
erator followed by the bounded variables, then a colon followed by the
range for the bounded variables and ended with a colon and the actual
expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the fol-
lowing notation:

32 math scrapbook

A
= < reason why A equals B >

B
≤ < reason why B is less than C >

C

We start by finding a recursive expression for f . We will use proper-
ties of quantified expressions as covered in Chapter 3 of Programming
in the 1990s3. Since fib.(0) = 0 we can use an equivalent definition 3 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

expression for f :

f (n) = (∑ i : 1 ≤ i < n : fib.i fib.(n− i))

We derive:

f .(n + 2)
= < definition of f >

(∑ i : 1 ≤ i < n + 2 : fib.i fib.(n + 2− i))
= < range split, 1-point rule >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 2− i)) + fib.(n + 1) fib.(1)
= < fib.(1) = 1 >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 2− i)) + fib.(n + 1)
= < definition of fib >

(∑ i : 1 ≤ i < n + 1 : fib.i (fib.(n + 1− i) + fib.(n− i))) + fib.(n + 1)
= < splitting the term >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 1− i)) +
(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n− i)) + fib.(n + 1)

= < definition of f >

f .(n + 1) + (∑ i : 1 ≤ i < n + 1 : fib.i fib.(n− i)) + fib.(n + 1)
= < range split, 1-point rule, fib.(0) = 0 >

f .(n + 1) + (∑ i : 1 ≤ i < n : fib.i fib.(n− i)) + fib.(n + 1)
= < definition of f >

f .(n + 1) + f .n + fib.(n + 1)

We get the recursive definition of f :

f .0 = 0

f .1 = 0

f .(n + 2) = fib.(n + 1) + f .(n + 1) + f .n, for n ≥ 0

It is straightforward to write a program that computes f from this
recursive definition, either iteratively with a loop that step by step
computes next values of f starting with f (2) and remembering the
last two computed values of f and of fib for the next computations, or
in Haskell by simply declaring the above recursions for f and fib. This
will lead to a runtime of O(n). But can we do better than linear ?

fibolucci 33

Let’s look again at the recursive expressions of the two functions
involved, leaving out the base cases and computing one additional
next value:

f .(n + 2) = fib.(n + 1) + f .(n + 1) + f .n

f .(n + 3) = fib.(n + 2) + f .(n + 2) + f .(n + 1)

fib.(n + 2) = fib.(n + 1) + fib.n

fib.(n + 3) = fib.(n + 2) + fib.(n + 1)

The key observation we can make here is that new values of the
two functions are linear combinations of previously computed values.
Linear combinations implies linear applications with matrix represen-
tations from linear algebra. How many previously computed values,
i.e. how far back do we need to go: we need the last computed value
last and the value computed before that, so 2 previous values. Looks
like we could try something in a linear space of dimension 2.

Let’s try first with fib which is simpler and doesn’t depend on f . We
define the function Fib : N→N2 into the two-dimensional space N2:

Fib.n =

(
fib.n

fib.(n + 1)

)
, for n ≥ 0

For a recursive expression for Fib we have:

Fib.(n + 1)
= < definition of Fib >(

fib.(n + 1)
fib.(n + 2)

)
= < definition of fib >(

fib.(n + 1)
fib.(n + 1) + fib.n

)
= < matrix multiplication >(

0 1
1 1

)(
fib.n

fib.(n + 1)

)
= < definition of Fib >(

0 1
1 1

)
Fib.n

So

Fib.(n + 1) =

(
0 1
1 1

)
Fib.n = . . . =

(
0 1
1 1

)n+1

Fib.0

The same approach can be used for f . We define a function F : N→
N4 into the four-dimensional space N4:

34 math scrapbook

F.n =

fib.n

fib.(n + 1)
f .n

f .(n + 1)

 , for n ≥ 0

For a recursive expression for F we have:

F.(n + 1)
= < definition of F >

fib.(n + 1)
fib.(n + 2)
f .(n + 1)
f .(n + 2)

= < definitions of fib and f >

fib.(n + 1)
fib.(n + 1) + fib.n

f .(n + 1)
f .(n + 1) + f .n + fib.(n + 1)

= < matrix multiplication >

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

fib.n
fib.(n + 1)

f .n
f .(n + 1)

= < definition of F >

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

 F.n

and

F.(n + 1) =

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

 F.n = . . . =

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

n+1

F.0

Calculating F.n also calculates f .n so if we can calculate F.n faster
than linear we also solve the original problem faster than linear. F.n is
basically an exponentiation so let’s look at the exponentiation function
exp(x, n) = xn. The following recursive expression holds for exp:

exp.x.n =

exp.(x x).(n/2) if n = 0 mod 2

x exp.x.(n− 1) if n = 1 mod 2

At least at every other step in the above recursion n is halved so
computing exp(x, n) has O(log n) runtime which also implies O(log n)
runtime for F.

fibolucci 35

Before we write the actual code for computing F let’s first see if we
can find a more compact representation for the powers of matrix A
involved in the computation:

A =

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

We are searching for patterns in the powers of A:

A2 =

1 1 0 0
1 2 0 0
0 1 1 1
1 2 1 2

 , A3 =

1 2 0 0
2 3 0 0
1 2 1 2
2 5 2 3

 , A4 =

2 3 0 0
3 5 0 0
2 5 2 3
5 10 3 5

We make the conjecture that Ak for any natural k is of the form:

Ak =

a b 0 0
b a + b 0 0
c d a b
e f b a + b

 , for some a, b, c, d, e, f ∈N (6.1)

and prove this by induction. The base case for k = 1 is established
with values (0, 1, 0, 0, 0, 1) for (a, b, c, d, e, f). Assuming that the conjec-
ture holds for Ak we look at Ak+1 and get:

Ak+1 = Ak A =

b a + b 0 0

a + b a + 2b 0 0
d b + c + d b a + b
f a + b + e + f a + b a + 2b

so Ak+1 has the same form as stated in the conjecture if we substi-
tute (b, a+ b, d, b+ c+ d, f , a+ b+ e+ f) for (a, b, c, d, e, f). This proves
conjecture (6.1).

It means that in our program we can use a tuple representation
(a, b, c, d, e, f) of 6 values instead of the whole 16 values to represent
the powers of A. We need to define multiplication in this tuple space
consistent with the matrix multiplication:

36 math scrapbook

(a, b, c, d, e, f)(a′, b′, c′, d′, e′, f ′) =

(aa′ + bb′,

ab′ + b(a′ + b′),

ca′ + db′ + ac′ + be′,

cb′ + d(a′ + b′) + ad′ + b f ′,

ea′ + f b′ + bc′ + (a + b)e′,

eb′ + f (a′ + b′) + bd′ + (a + b) f ′)

We read this definition off the matrix multiplication:
a b 0 0
b a + b 0 0
c d a b
e f b a + b

a′ b′ 0 0
b′ a′ + b′ 0 0
c′ d′ a′ b′

e′ f ′ b′ a′ + b′

The last expression we need is:

AnF.0 =

a b 0 0
b a + b 0 0
c d a b
e f b a + b

0
1
0
0

 =

b

a + b
d
f

so we are interested in d which corresponds to the F.n coordinate of

the vector.
Putting all the pieces together we get the final Haskell program:

fibolucci 37

Listing 6.1: Haskell code

type Tuple6 Ints = (Int , Int , Int , Int , Int , Int)

tmul : : Tuple6 Ints −> Tuple6 Ints −> Tuple6 Ints

tmul (a , b , c , d , e , f) (a ’ , b ’ , c ’ , d ’ , e ’ , f ’) =
(a * a ’ + b * b ’ ,

a * b ’ + b * (a ’ + b ’) ,
c * a ’ + d * b ’ + a * c ’ + b * e ’ ,
c * b ’ + d * (a ’ + b ’) + a * d ’ + b * f ’ ,
e * a ’ + f * b ’ + b * c ’ + (a + b) * e ’ ,
e * b ’ + f * (a ’ + b ’) + b * d ’ + (a + b) * f ’)

f ibexp : : Tuple6 Ints −> Int −> Tuple6 Ints

f ibexp tuple n | n == 0 = e r r o r " undefined "
| n == 1 = tuple
| n ‘mod‘ 2 == 0 =

f ibexp (tuple ‘ tmul ‘ tuple)
(n ‘ div ‘ 2)

| n ‘mod‘ 2 == 1 =
tuple ‘ tmul ‘ (f ibexp tuple (n − 1))

| otherwise = e r r o r " wrong input "

fourth : : Tuple6 Ints −> Int

fourth (a , b , c , d , e , f) = d

f i b o l u c c i : : Int −> Int

f i b o l u c c i n | n == 0 = 0

| otherwise =
fourth (f ibexp (0 , 1 , 0 , 0 , 0 , 1) n)

7
Grasshopper jumping

Induction and integer inequalities are the topics of this note1. 1 For an extension to signed jumps see

Géza Kós. On the grasshopper prob-
lem with signed jumps. The Ameri-
can Mathematical Monthly, 118:877–886,
2010. URL https://arxiv.org/abs/

1008.2936Problem

Let a1, a2, . . . , an be distinct positive integers and let M be a set
of n− 1 positive integers not containing s = a1 + a2 + . . .+ an. A
grasshopper is to jump along the real axis, starting at the point
0 and making n jumps to the right with lengths a1, a2, . . . , an in
some order. Prove that the order can be chosen in such a way
that the grasshopper never lands on any point in M.

We use induction on n and we use the problem as our induction
hypothesis with one modification: set M has at most n− 1 elements.

The base case n = 2 is trivial.
Let A = {ai : 1 ≤ i ≤ n} and M = {mi : 1 ≤ i < n}. Assume

a1 < a2 < . . . < an and m1 < m2 < . . . < mn−1. For the induction step
we have several cases.
Case: an ∈ M

There is an l : 1 ≤ l < n : ml = an.
If l = n− 1: there is an index k for which ak /∈ M. Then the order

{k, n, . . .} never lands on any point in M because ak + an > mn−1.
If l < n− 1: Define M′ = {m1, m2, . . . , ml−1}∪{ml+1− an, . . . , mn−1−

an}. Use integers a1, . . . , an−1 and M′ as induction step to get an order
aπ(1), . . . , aπ(n−1) with π ∈ Sn−1.

aπ(1) /∈ M′ and aπ(1) < an, so aπ(1) /∈ M.
aπ(1) /∈ {ml+1− an, . . . , mn−1− an}, so aπ(1)+ an /∈ {ml+1, . . . , mn−1}.

Also aπ(1) + an > an so aπ(1) + an /∈ {m1, m2, . . . , ml−1}. That means
aπ(1) + an /∈ M.

We continue with similar reasoning with the rest: aπ(1)+ an + aπ(2) /∈
M because aπ(1) + aπ(2) /∈ {ml+1 − an, . . . , mn−1 − an}, so aπ(1) + an +

https://arxiv.org/abs/1008.2936
https://arxiv.org/abs/1008.2936

grasshopper jumping 39

aπ(2) /∈ {ml+1, . . . , mn−1} and aπ(1) + an + aπ(2) > an etc.
This means {π(1), n, π(2), . . . , π(n− 1)} is a valid order.

Case: an /∈ M
If there is an mi < an then we can use the induction step with inte-

gers a1, a2, . . . , an−1 and set M′ = {mi+1− an, mi+2− an, . . . , mn−1− an}
to find an order and prepend an to that order.

If not, then ∀ 1 ≤ i < n : mi > an.
∑n−1

j=1 aj ≥ m1 because otherwise we could have used order {1, 2, . . . , n}.
We have a1 < an < m1 and ∑n−1

j=1 aj ≥ m1, so there exists an 1 ≤ l <

n− 1 such that s′ = ∑l
j=1 aj < m1.

Define M′ = {m2− an, m3− an, . . . , mn−1− an} and use M′ with the
integers a1, a2, . . . , an−1 in an induction step which gives us an order
π ∈ Sn−1.

Since aπ(1) < m1 and ∑n−1
j=1 aπ(j) ≥ m1 there exists an 1 < l ≤ n− 1

such that ∑l−1
j=1 aπ(j) < m1 and ∑l

j=1 aπ(j) ≥ m1.
We look at the order {π(1), . . . , π(l − 1), n, π(l), . . . , π(n− 1)} and

claim it is a valid order.
Indeed ∑l−1

j=1 aπ(j) < m1, so jumps {π(1), . . . , π(l − 1)} won’t en-
counter anything from M. We also have

l−1

∑
j=1

aπ(j) + an >
l

∑
j=1

aπ(j) ≥ m1

which means {π(1), . . . , π(l − 1), an} will avoid m1. It will also
avoid anything from M \ {m1} because {π(1), . . . , π(l − 1)} avoids
anything from M′. The rest of the order is already bigger than m1

and avoids M \ {m1} by induction.

8
Groovy numbers

Problem

x ∈ R is said to be a groovy number iff ∃ n ∈ N such that
x =
√

n +
√

n + 1. Prove that if x is groovy, then ∀r ∈N : xr is
groovy.

Binomial Expansion

In this section we explore a property of the binomial power expansion

(a + b)r =
r

∑
k=0

(
r
k

)
ar−kbk

We define Nr = {k ∈ N0 : 0 ≤ k ≤ r} and its partition into two
subsets Nr = Er ∪Or, with Er = {k ∈Nr : k = 2u, u ∈N0} and
Or = {k ∈Nr : k = 2u + 1, u ∈N0}. We then partition the binomial
power expansion into two sums:

(a + b)r =
r

∑
k=0

(
r
k

)
ar−kbk = ∑

k∈Er

(
r
k

)
ar−kbk + ∑

k∈Or

(
r
k

)
ar−kbk

Let

E(a, b, r) = ∑
k∈Er

(
r
k

)
ar−kbk and O(a, b, r) = ∑

k∈Or

(
r
k

)
ar−kbk

Then

(a2 − b2)r = (a + b)r(a− b)r

= (E(a, b, r) + O(a, b, r))(E(a,−b, r) + O(a,−b, r))

groovy numbers 41

But

E(a,−b, r) = E(a, b, r) and O(a,−b, r) = −O(a, b, r)

so

(a2 − b2)r = (a + b)r(a− b)r

= (E(a, b, r) + O(a, b, r))(E(a,−b, r) + O(a,−b, r))

= (E(a, b, r) + O(a, b, r))(E(a, b, r)−O(a, b, r))

= E(a, b, r)2 −O(a, b, r)2

We therefore proved

Lemma 8.1.

(a2 − b2)r = E(a, b, r)2 −O(a, b, r)2

Solution

Using lemma 8.1 with a =
√

n and b =
√

n + 1, we get

(−1)r = E(
√

n,
√

n + 1, r)2 −O(
√

n,
√

n + 1, r)2 (L)

Lemma 8.2.

E(
√

n,
√

n + 1, r)2 ∈N,

O(
√

n,
√

n + 1, r)2 ∈N

Proof. We will look at two cases: r even and r odd.
Case 1. For r = 2u even we have

E(
√

n,
√

n + 1, 2u) =
u

∑
k=0

(
2u
2k

)
(
√

n)2u−2k(
√

n + 1)2k

=
u

∑
k=0

(
2u
2k

)
(
√

n)2(u−k)(
√

n + 1)2k

=
u

∑
k=0

(
2u
2k

)
nu−k(n + 1)k

so E(
√

n,
√

n + 1, r) ∈N, and therefore E(
√

n,
√

n + 1, r)2 ∈N.

42 math scrapbook

O(
√

n,
√

n + 1, 2u) =
u−1

∑
k=0

(
2u

2k + 1

)
(
√

n)2u−2k−1(
√

n + 1)2k+1

=

√
n + 1√

n

u−1

∑
k=0

(
2u

2k + 1

)
(
√

n)2(u−k)(
√

n + 1)2k

=

√
n + 1√

n

u−1

∑
k=0

(
2u

2k + 1

)
n2(u−k)(n + 1)k

=
√

n(n + 1)
u−1

∑
k=0

(
2u

2k + 1

)
n2(u−k)−1(n + 1)k

so O(
√

n,
√

n + 1, r)2 ∈N.
Case 2. r = 2u + 1 is handled in a similar fashion by factoring out

√
n

and
√

n + 1 with the remainder ∈N.

From lemma 8.2 and equation (L) it follows that E(
√

n,
√

n + 1, r)2 and
O(
√

n,
√

n + 1, r)2 are consecutive natural numbers. Let

m = min(E(
√

n,
√

n + 1, r)2, O(
√

n,
√

n + 1, r)2) ∈N

Then

xr = (
√

n +
√

n + 1)r =
√

m +
√

m + 1

9
Devil’s chessboard

Hamming codes are used to solve the problem1 in this note. 1 Michael Tong. Devil’s chess-
board. 2013. URL https:

//brilliant.org/discussions/thread/

the-devils-chessboard/

You, your friend, and the Devil play a game. You and the Devil
are in the room with a chess board with 64 tokens on it, one on each
square. Meanwhile, your friend is outside of the room. The token can
either be on an up position or a down position, and the difference in
position is distinguishable to the eye. The Devil mixes up the positions
(up or down) of the tokens on the board and chooses one of the squares
and calls it the magic square. Next, you may choose one token on a
square and flip its position. Then, your friend comes in and must
guess what the magic square was by looking on the squares on the
board.2 2 Details:

1. You may flip a token. As in, you are
not forced to flip a token; you may
choose to not flip a token.

2. You can’t just tell your friend what
square it is. Or point to it. Or text
him it. Or... you get the point.

3. Your friend knows the strategy as
well (you tell him beforehand).

4. If you don’t get it right, the Devil
takes your soul. High stakes.

Problem

Show that there is a winning strategy such that your friend can
always know what square the magic square is.

There might be solutions that exploit the chessboard geometry with
its black and white fields. We will ignore the chessboard angle though
and use this problem as an excuse to dive into the topic of linear codes.
We will solve the problem by treating the token information as a 64-bit
word and we will devise a winning strategy that involves a Hamming3

3 Richard Hamming was one of the
founders of modern coding theory.
http://en.wikipedia.org/wiki/

Richard_Hamming

code (a type of perfect linear code).
But first lets introduce linear codes. We operate in the field Fq of

integers modulo a prime q.

Definition 9.1. A linear code C of words of length n is a subspace of
the vector space Fn

q . Let dim C = k, then we say that C is a [n, k]q linear
code.

Given a basis {c1, c2, . . . , ck} of C, we can build a matrix G ∈ Fk×n
q

https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/
http://en.wikipedia.org/wiki/Richard_Hamming
http://en.wikipedia.org/wiki/Richard_Hamming

44 math scrapbook

using the ci basis vectors as rows. Then C is the row space of G and G
is called a generator matrix of C. We have4 4 We treat vectors as row vectors in this

section. That means that x ∈ Fk
q is a ma-

trix F1×k
q .C = {xG : x ∈ Fk

q},
so a code C is made from all linear combinations of the row vectors of
its generator matrix.

Let G′ be the row reduced echelon form of G. By definition G has
full row rank, so G′ has only nonzero rows. If G′ = [Ik | Ak×(n−k)] for
identity matrix Ik and some matrix A then the generator matrix G′ is
in standard form5. Row operations preserve the row space, so G′ also 5 Not every generator matrix can be row

reduced to the standard form. For exam-
ple [

1 1 0 0
0 0 1 1

]
cannot.

generates C.

Definition 9.2. Given a [n, k]q linear code C, matrix H ∈ F
(n−k)×n
q is a

parity check matrix for C, if C = nullspace(H) = {c ∈ Fn
q : HcT = 0}.

Theorem 9.3. Given a [n, k]q linear code C and a generator matrix G =

[Ik | Ak×(n−k)] for C in standard form, then H =
[
−AT

(n−k)×k | In−k
]

is a parity
check matrix6 for C. 6 With G in standard form this theorem

let’s us construct a parity check matrix
very easily. Also worth noting that in
standard form we generate a code word
from a message x ∈ Fk

q by appending
n − k parity check bits to the message
with xG. We check if the transmitted
and received word y ∈ Fn

q is a valid code
word by verifying HyT = 0. If true then
the first k positions of y are the original
message x.

Proof. Let c ∈ C be a code word from C. Then there exists an x ∈ Fk
q

such that c = xG. We have

HcT = H(xG)T

=
[
−AT

(n−k)×k|In−k

] (
x
[

Ik|Ak×(n−k)

])T

=
[
−AT

(n−k)×k|In−k

] [Ik

AT
(n−k)×k

]
xT

= (−AT + AT)xT

= 0

This means that C ⊆ nullspace(H). We have dim C = k and

dim nullspace(H) = n− rank(H) = n− n + k = k,

so C = nullspace(H) and H is a parity check matrix for C.

What can we do if the generator matrix is not in standard form?
Swapping columns in the generator matrix does not preserve the row
space, so the linear code generated with the modified matrix is clearly
not the same as the original code, but it is an equivalent code7. 7 A [n, k1]q linear code C1 is equivalent to

a [n, k2]q linear code C2 if there is a per-
mutation π ∈ Sn such that when π is ap-
plied to the coordinate indices of all the
code words from C1, it produces all the
code words from C2. Equivalent linear
codes have the same dimension k1 = k2.

Definition 9.4. The Hamming distance d(x, y) between two vectors
x, y ∈ Fn

q is the number of positions in which the vectors differ. With
x = x1x2 . . . xn and y = y1y2 . . . yn we have

d(x, y) = |{i : 1 ≤ i ≤ n : xi ̸= yi}|

devil’s chessboard 45

The Hamming weight w(x) is the number of positions that differ from
zero:

w(x) = |{i : 1 ≤ i ≤ n : xi ̸= 0}| = d(x, 0)

We will use the following properties of Hamming distances: Proof of Lemma 9.5
The first three properties are obvious
from the definition of Hamming dis-
tance. For the last property let i be an
index where x and y differ, so xi ̸= yi .
For vector z we can have the following
cases for position i:

zi = xi ⇒ zi ̸= yi

zi = yi ⇒ zi ̸= xi

zi ̸= xi ∧ zi ̸= yi

In each of these cases the contribution
of zi to d(x, z) + d(z, y) is at least one,
whereas on the left side position i con-
tributes one to d(x, y). A similar analysis
holds for indices i where xi = yi .

Lemma 9.5.

∀x, y ∈ Fn
q : d(x, x) ≥ 0

∀x, y ∈ Fn
q : d(x, y) = 0⇔ x = y

∀x, y ∈ Fn
q : d(x, y) = d(y, x)

∀x, y, z ∈ Fn
q : d(x, y) ≤ d(x, z) + d(z, y)

Definition 9.6. The minimum distance of C is:

d(C) = min{d(x, x′) : x, x′ ∈ C ∧ x ̸= x′} = min{w(x) : x ∈ C}

The minimum distance is important enough that we add it to the
characteristic notation of a linear code: [n, k, d]q is a linear code over
field Fq with bit strings of length n, code dimension k and minimum
distance between code words d.

The next lemma establishes a connection between the minimum dis-
tance of a linear code and one of its parity check matrix.

Lemma 9.7. The minimum distance of a code C equals the minimum number
of linearly dependent columns in one of its parity check matrices.

Proof of Lemma 9.7
Let H be a parity check matrix of
[n, k, d]q linear code C. There must be
a code word c with w(c) = d. c belongs
to the nullspace of H, so

HcT = 0

But HcT is a linear combination of col-
umn vectors of H, with d nonzero co-
efficients, so the column vectors in this
linear combination are linearly depen-
dent.

So far we have worked with fields Fq of any prime q. Now we
switch to the binary world q = 2 and F2. Our vectors are bit strings.
We transmit these bit strings over a binary symmetric channel.

Definition 9.8. In a binary symmetric channel each bit sent has the
same probability p < 1

2 of being received incorrectly.

We send a code word x ∈ C from a [n, k]2 linear code C over a
binary symmetric channel and receive a bit string y. If there were no
transmission errors, then y = x. If there were errors, we want to find
the most likely code word x that was transmitted given the errors in y.

One decoding strategy8 would be to choose a code word x with 8 Finding an appropriate code word for
the transmitted bit string is called decod-
ing. Finding the most likely code word
is called maximum likelihood decoding.

minimum Hamming distance over all code words from C to received
bit string y. This type of decoding is called nearest neighbor decoding.
The chosen x is not always unique.

Theorem 9.9. In a binary symmetric channel with error probability p < 1
2

the nearest neighbor decoding is a maximum likelihood decoding.

Proof. Given a bit string y ∈ Fn
2 received through the channel, let Py(x)

be the probability that the code word x was sent when y was received.
Because the channel is a binary symmetric channel, we have

46 math scrapbook

Py(x) = pd(x,y)(1− p)n−d(x,y)

Consider two code words x and x′ such that d(x, y) ≤ d(x′, y).
Because p < 1

2 , we then have Py(x) ≥ Py(x′). It follows that

max
x∈C

Py(x) = min
x∈C

d(x, y)

so the likeliest code word is the nearest neighbor to y.

For the rest of this section we use nearest neighbor decoding. We
want to know if we can detect and possibly correct a transmission with
errors. Let’s define clearly what we mean by that. A transmission is a
pair (x, y) ∈ C×Fn

2 , where a code word x was sent and a bit strings y
was received. It has d(x, y) transmission errors. The nearest neighbor
decoding nnd(y) finds a code word (not necessarily unique) closest to
y. The following holds by definition:

d(y, nnd(y)) = min
c∈C

d(y, c)

If no errors occurred in the transmission, then x = y and also
d(x, y) = 0 and nnd(y) = x. If errors in the transmission occurred
we want to:

E.1 detect that errors happened, i.e. establish that y /∈ C.

E.2 correct the errors, i.e. establish nnd(y) = x.

The next theorem describes the conditions for E.1.

Theorem 9.10. Given a [n, k, d]2 linear binary code C, we can detect that
any transmission with up to e errors was erroneous if and only if d > e.

Proof. (⇒) Let (x, y) be a transmission with d(x, y) ≤ e < d errors.
Assume y ∈ C. Then d(x, y) ≤ e < d is a contradiction to d being the
minimal distance of C. It follows that y /∈ C.
(⇐) We can detect that any transmission with up to e errors was erro-
neous. Assume d ≤ e. Then there exist two code words x ̸= x′ such
that d(x, x′) ≤ e. Now consider transmission (x, x′). It’s impossible to
detect that it had errors because x′ is a code word. This is a contradic-
tion with the fact that we can detect that any transmission with up to
e errors was erroneous. So d > e.

c1

c2

c3

c4

x

y

z

e

e
e

e

Figure 9.1: A Hamming sphere for code
word c with radius e is the set
{x : d(x, c) ≤ e}. In this figure the
spheres don’t overlap, so vectors (blue
dots) that fall within a sphere can be
error-corrected to code words (red dots).

For E.2 we have this theorem:

Theorem 9.11. Given a [n, k, d]2 linear binary code C, we can correct any
transmission with up to e errors if d > 2e.

devil’s chessboard 47

Proof. Let (x, y) be a transmission with d(x, y) ≤ e errors and d > 2e.
Assume nnd(y) ̸= x. Then d(y, nnd(y)) ≤ e (otherwise x would be
closer than nnd(y) to y). We have

d(x, nnd(y)) ≤ d(x, y) + d(y, nnd(y)) ≤ e + e = 2e

which contradicts d > 2e. So nnd(y) = x.

Theorems 9.10 and 9.11 tell us that a large minimum distance d(C)
allows us to detect and correct more errors. But a large minimum
distance between code words also limits the number of code words.
The following theorem puts an upper bound on the number of code
words given a minimum distance.

Theorem 9.12. Given a [n, k, 2t + 1]2 linear binary code C, we have

|C| ≤ 2n

∑t
i=0 (

n
i)

This upper bound is called Hamming bound.

Proof. Given a bit string x and an integer i ≤ n, there are (n
i) ways to

choose the i positions at which x and and another bit string y differ.
So there are (n

i) bit strings y with d(x, y) = i. This means there are

t

∑
i=0

(
n
i

)
bit strings y with d(x, y) ≤ t.

On the other hand, a bit string y with d(y, x) ≤ t to a code word x
cannot have the same d(y, x′) ≤ t to a different code word x′ because
then

d(x, x′) ≤ d(x, y) + d(y, x′) ≤ t + t ≤ 2t

which is a contradiction to d(C) = 2t + 1.
So for each code word, we have at most ∑t

i=0 (
n
i) bit strings with

Hamming distance ≤ t and we cannot have the same bit strings near
two different code words. We have 2n bit strings, so

|C|
t

∑
i=0

(
n
i

)
≤ 2n

A binary linear code that achieves equality in the Hamming bound
9.12 is called a perfect code.

We are now ready to define Hamming codes.

48 math scrapbook

Definition 9.13. A Hamming code Hr of order r (where r is a posi-
tive integer) is a binary linear code with the parity check matrix with
columns that are all the 2r − 1 nonzero bit strings of length r.

Changing the order of the columns in the parity check matrix pro-
duces equivalent codes with the same minimum distance. So for easier
analysis we now consider Hamming codes with parity check matrix in
standard form, ie the last r columns form the identity matrix Ir, so
H = [Ar×(n−r) | Ir], with n = 2r − 1. From theorem 9.3 we then know
the generator matrix is G =

[
In−r | −AT

(n−r)×r

]
=
[

In−r | AT
(n−r)×r

]
, since

we operate in F2. We can see that dimHr = n− r. What is the mini-
mum distance of Hr? All columns are nonzero and distinct, so no two
columns are linearly dependent9. But consider the linear combination 9 Again, this is in F2. The sum of two

distinct columns is always nonzero, so
a linear combination that is zero has to
have coefficients zero, hence linearly in-
dependent.

of the three columns

[1, 1, 0, . . . , 0]T + [1, 0, 0, . . . , 0]T + [0, 1, 0, . . . , 0]T = 0T

They are linearly dependent. From lemma 9.7 it follows that d(Hr) =

3, so Hr is a [2r − 1, 2r − 1 − r, 3]2 binary linear code. According to
theorem 9.11 it can correct transmissions with one error.

Theorem 9.14. Hr is a perfect code.

Proof. The generator matrix has full row rank, so we need all linear
combinations of the rows to get all the code words. This are binary
words, so there are 2n−r distinct linear combinations. It means |Hr| =
2n−r.

Inserting into formula of theorem 9.12, we get10 10 With t = 1, because d(Hr) = 3.

2n−r
1

∑
i=0

(
n
i

)
= 2n−r(1 + n) = 2n−r(1 + 2r − 1) = 2n−r2r = 2n

This concludes our dive into linear codes and Hamming codes. Let’s
return to our problem and solve it using Hamming codes. The state
of the chessboard is a binary word of length 64. We use r = 6, so
Hamming code H6. The word length is 26 − 1 = 63. We agree that
the devil choosing bit 64 is a special case which we handle later. For
now imagine the chessboard as a 63-bit binary word and the devil only
choosing a magic field between 1 and 63.

devil’s chessboard 49

The winning strategy can be summarized as follows: the first player
needs to modify the 63-bit word (by flipping at most one bit) in such
a way that the magic field is the one bit error of a code word in H6.
Then the second player only has to come in, decode11 the modified 11 Decoding is done as follows: x needs

to be decoded. It is one bit away from
a code word c with error at bit k. Let
ek be the unit vector with bit k set. So
x = c + ek and

Hx = H(c + ek) = Hek

Since ek is be the unit vector with bit
k set, Hek is column k from the parity
check matrix H. To decode we calculate
Hx and look to see which column in H
the result is. To save the lookup step we
can be even more elegant. Instead of the
parity check matrix in standard form, we
choose a parity check matrix where col-
umn k is the bit representation of k. In-
stead of lookup we just reverse the bit
representation back to the integer k.

chessboard and point to the corrected error which is the same magic
field.

Is this always possible? We know that Hamming codes are perfect
codes, so any 63-bit word is at most one bit away from a code word.
We have the following cases for the initial state of the chessboard:

• It happens to be a code word in H6. Then the first player flips the
magic field bit, producing an error there.

• It happens to be a 63-bit word that is a one bit error at the magic
field. The first player doesn’t flip any bit in this case.

• It happens to be a 63-bit word with a one bit error different from
the magic field.

The last case needs a little thinking. Assume H is the parity check
matrix for our H6 Hamming code and assume the state of the chess-
board is x, which is one bit error from a code word c1. Also let
1 ≤ m ≤ 63 be the magic field bit and em the unit vector with bit m
set. The one bit error is different from the magic field, so x− c1 ̸= em.
Let y = x− em, which is also one bit away from a code word c2, with
error bit k. So y = c2 + ek.

Now consider x− ek:

H(x− ek) = H(y+ em− ek) = H(y− ek)+ Hem = Hc2 + Hem = Hem

So x − ek has one bit error at the magic field, which is what we
want. Flipping bit k on the initial chessboard x achieves that.

In all three cases the modified chessboard is one bit away from a
code word with the error at the magic field and the chessboard was
modified by flipping at most one bit. The players agree that if the
chessboard is a code word instead, then the devil chose bit 64 as the
magic field, which handles the special case. Modifying the chessboard
to get a code word can also be done by flipping at most one bit. This
scales to any chessboard with size a power of two.

50 math scrapbook

What follows is a Mathematica session illustrating the strategy. We use a parity check matrix with column k
the bit representation of integer k. This simplifies decoding as remarked in the side note 11 above.

The function hamming generates the parity check matrix for a Hamming code with a given r.

In[1]:= hamming[r_Integer] := Transpose[Table[IntegerDigits[i, 2, r], {i, 1, 2^r - 1}]]

For example

In[2]:= hamming[4] // MatrixForm

Out[2]=

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We define r and the corresponding Hamming code h for our chessboard

In[3]:= r = 6;

In[4]:= h = hamming[6];

The function pos returns the unit vector with the error bit set from decoding the specified word.

In[5]:= pos[w_] := With[{s = Mod[h.w, 2]}, UnitVector[2^Length[s] - 1, FromDigits[s, 2]]]

Function friendOne implements the strategy part for the first friend. Given the initial state of the chess-
board cb and a magic field mf, it returns a modified chessboard.

In[6]:= friendOne[cb_List, mf_Integer] := Module[{em, y, ey},

em = UnitVector[2^r - 1, mf]; y = Mod[cb - em, 2]; ey = pos[y];

z = Mod[cb - ey, 2]

]

Function friendTwo implements the strategy part for the second friend: decoding the specified chessboard
and returning the index of the error bit which is also the magic field.

In[7]:= friendTwo[cb_List] := Position[pos[cb], 1][[1,1]]

This next function is returning random initial states for the chessboard.

In[8]:= rw := RandomInteger[1, {2^r - 1}]

We can now simulate one game with the devil.
cb is the initial (random) state of the chessboard.

In[9]:= cb = rw;

The magic field is some integer, the devil chose 23.

In[10]:= mf = 23;

The first friend enters the room, modifies the chessboard according to friendOne. The returned value is
the modified chessboard.

devil’s chessboard 51

In[11]:= cb2 = friendOne[cb, mf];

Let’s check that the Hamming distance between initial and modified chessboard is at most one.

In[12]:= HammingDistance[cb, cb2]

Out[12]= 1

The second friend comes in and decodes with friendTwo, getting 23.

In[13]:= friendTwo[cb2]

Out[13]= 23

10
Maximum subsequence

Problem

Given a sequence of integer numbers x0, x1, . . . , xN−1 (not nec-
essarily positive) find a subsequence xi, . . . , xj−1 such that the
sum of numbers in it is maximum over all subsequences of con-
secutive elements.

We adopt the same notation used in Programming in the 1990s 1 and 1 Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

Programming, The Derivation of Algorithms2: The notation of function

2 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

application is the "dot" notation with name of function, followed by
arguments, each separated by a dot. The notation of quantified ex-
pressions has the operator followed by the bounded variables, then a
colon followed by the range for the bounded variables and ended with
a colon and the actual expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the following
notation:

A
= {reason why A equals B}

B
≤ {reason why B is less than C}

C

If all the numbers are positive then the maximum sum is the sum
of the whole initial sequence. If all the numbers are negative then the
maximum sum is 0 (by definition 0 is the sum over an empty range). So
the interesting case is a sequence with positive and negative numbers
in it.

maximum subsequence 53

We hope to find an algorithm that visits every number in the se-
quence only once, so with runtime O(n). Let’s introduce some nota-
tion: Let’s introduce some notation3 : 3 Our problem can be stated as finding

f .N given xi ∈ Z, 0 ≤ i < N, N ∈N.

f .n = (MAXi, j : 0 ≤ i ≤ j ≤ n : s.i.j)

with
s.i.j = (∑ k : i ≤ k < j : xk).

We will use properties of quantified expressions as covered in Chap-
ter 3 of Programming in the 1990s4. 4 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990f .N

= < definition of f >

(MAXi, j : 0 ≤ i ≤ j ≤ N : s.i.j)
= < range nesting >

(MAXj : 0 ≤ j ≤ N : (MAXi : 0 ≤ i ≤ j : s.i.j))
= < defining p.j = (MAXi : 0 ≤ i ≤ j : s.i.j) >

(MAXj : 0 ≤ j ≤ N : p.j)
= < range split, 1-point rule >

(MAXj : 0 ≤ j < N : p.j) max p.N
= < definition of f >

f .(N − 1) max p.N

We now have a recursive expression for f , which still depends on
a newly introduced function p. Let’s see if we can get a recursive
expression for p too:

p.N
= < definition of p >

(MAXi : 0 ≤ i ≤ N : s.i.N)

= < range split, 1-point rule >

(MAXi : 0 ≤ i < N : s.i.N) max s.N.N
= < definition of s and s.N.N = 0 by definition of sum over empty range >

(MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N : xk)) max 0
= < range split in sum >

(MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N − 1 : xk) + xN−1) max 0
= < + distributes over max >

(xN−1 + (MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N − 1 : xk)) max 0
= < definition of p >

(xN−1 + p.(N − 1)) max 0

So f .N = f .(N − 1) max p.N and p.N = (xN−1 + p.(N − 1)) max 0.
The base cases are f .0 = 0 and p.0 = 0.

Armed with these recursive relations we can provide a Haskell pro-
gram that solves the problem:

54 math scrapbook

Listing 10.1: Haskell code

maxSum : : [Int] −> (Int , Int)

maxSum (x : xs) = l e t (a , b) = maxSum xs
c = x + b

in (max c (max a 0) , max c 0)

maxSum [] = (0 , 0)

The maxSum function calculates the tuple (f .N, p.N).

11
Minkowski Sum & Well-spaced triples

Fast Fourier Transform and using it to speed up polynomial mul-
tiplication is the topic of the two problems1 in this note. 1 Jeff Erickson. Algorithms —

Extended Dance Remix: Fast
Fourier Transforms. https:

//jeffe.cs.illinois.edu/teaching/

algorithms/notes/A-fft.pdf, 2021.
[Online; accessed 07-May-2022]Problem

Given two sets of integers X ⊂ Z and Y ⊂ Z, compute the size
of the Minkowski sum: X + Y = {x + y : x ∈ X, y ∈ Y} in
O(n log n) time.

Solution. A pretty straightforward way of calculating the Minkowski
sum is to generate all possible pairs (that is a nested loop, so O(n2))
and then also making sure the resulting values form a set, so only
occur once. This can be achieved by storing the values as we go in a
balanced binary search tree. For each value the cost would be O(log n),
so the straightforward solution has a runtime of O(n2 log n) if using a
binary search tree or O(n2) if using a hashtable.

Can we do better? This problem is an exercise in the FFT chapter of
Jeff Erickson’s Algorithms book. So the answer is: yes we can. To do
so, we remember that multiplying two polynomials given in coefficient
form can be done in O(n log n) using the Fast Fourier Transform.

But what polynomials should we consider? Let’s explore polyno-
mial multiplication with a couple of examples:

(1 + x)(x2 + x5) = 1(x2 + x5) + x(x2 + x5)

= x2 + x5 + x3 + x6

(2x + x4)(1 + 3x3) = 2x(1 + 3x3) + x4(1 + 3x3)

= 2x + 6x4 + x4 + 3x7

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf

56 math scrapbook

Notice how we multiplied each monomial2 from the first polyno- 2 A monomial is an individual term of
a polynomial A polynomial is a sum of
monomials. In our example the mono-
mials of 1 + x are 1 and x. The monomi-
als of x2 + x5 are x2 and x5.

mial with each mononial from the second polynomial. In the second
example it is also visible that we haven’t yet collected together all the
monomials of degree four of the multiplication result to better demon-
strate that each monomial from the first polynomial is multiplied with
each monomial from the second polynomial.

When we multiply two monomials, their coefficients get multiplied
and their exponents get added. Each monomial from one polynomial
is paired with each monomial from the other polynomial in an oper-
ation (multiplication) and in that operation the exponents are added.
This strongly suggests3 that we should define a polynomial from one 3 In the problem each member of the first

set is paired with each member of the
second set in an operation (addition).

of the given sets of integers by making the members of the set be the
exponents of the monomials that form the polynomial.

For example: if X = {2, 5, 6} then the corresponding polynomial
could be x2 + x5 + x6. The polynomial coefficients have been arbitrarily
chosen to all be one 4. 4 There is one small wrinkle in this

scheme. In the problem the given sets
are sets of integers, so they can be neg-
ative. We cannot have monomials with
negative exponents. For now let us as-
sume X and Y only contain non-negative
integers with the promise that at the end
of this solution we will address how to
drop this assumption.

Thus we define the two polynomials pX(x) and pY(x) from the
given integer sets X and Y:

pX(x) = ∑
i∈X

xi

pY(x) = ∑
j∈Y

xj

and we multiply them

pX(x)pY(x) = ∑
i∈X

∑
j∈Y

xi+j

The exponents of the monomials of the polynomial product are the
members of the Minkowski sum X + Y. The size of X + Y is the num-
ber of monomials 5. 5 As promised: what can we do when X

and Y contain negative integers. Let d >
0 be a constant such that both d + X =
{d + a : a ∈ X} and d + Y = {d + b : b ∈
Y} have only non-negative members.

We define the polynomials slightly dif-
ferently:

pX(x) = ∑
i∈X

xi+d

pY(x) = ∑
j∈Y

xj+d

and we multiply them

pX(x)pY(x) = ∑
i∈X

∑
j∈Y

xi+j+2d

Again, the size of X + Y is the number
of monomials.

This gives us a way to calculate the size of X + Y in O(n log n) be-
cause we can do the polynomial multiplication using FFT in O(n log n).

Problem

Given is a bit string B[1 . . . n]. A well-spaced triple is a triple
(i, j, k) of indices such that 1 ≤ i < j < k ≤ n and B[i] = B[j] =
B[k] = 1. Detect in O(n log n) time if bit string B contains a
well-spaced triple.

minkowski sum & well-spaced triples 57

Solution. Again the brute-force solution is easy to describe: for each
middle index in the triple we consider all possible distances to left
and right indices and check the condition. This is a nested loop with
runtime O(n2).

We will try to improve on the brute-force by again employing poly-
nomial multiplication even though it is not an obvious choice. After
all we are only given one bit string, not two bit strings and multipli-
cation needs two operands. But maybe we can derive a polynomial
from the bit string and then square that polynomial which would be a
polynomial multiplication.

Let’s explore what would happen if we use the given bit string B
directly as a coefficient vector of a polynomial

pB(x) =
n−1

∑
i=0

B[i + 1]xi

Squaring pB(x) we get

(pB(x))2 = pB(x)pB(x)

= (
n−1

∑
i=0

B[i + 1]xi)(
n−1

∑
j=0

B[j + 1]xj)

=
n−1

∑
i=0

n−1

∑
j=0

B[i + 1]B[j + 1]xi+j

For all 0 ≤ j < n monomial xj is present in pB(x) if B[j + 1] = 1.
If monomial xj is present in pB(x) then monomial x2j is present in
(pB(x))2. This is because monomial xj pairs with itself in the polyno-
mial multiplication. So the coefficient of monomial x2j in (pB(x))2 is
at least one (namely B[j + 1]B[j + 1] = 1). Can it be larger than one?
It would mean that some other monomial pairing has exponent sum
equal to 2j. Let i and k be the two indices for which B[i + 1] = 1,
B[k + 1] = 1 and i + k = 2j. But i + k = 2j is equivalent to k− j = j− i
which means that (i, j, k) form a well-spaced triple. This (i, k) mono-
mial pairing appears twice in the polynomial multiplication (once for
monomial xi from the left and monomial xk from the right and once
reversed with monomial xk from the left and monomial xi from the
right). That means that the well-spaced triple contributes the value
two to the coefficient of x2j in (pB(x))2 and we have found our criteria
for detecting well-spaced triples: if (pB(x))2 has any monomials with
even degree and coefficients greater or equal to three, then B has a
well-spaced triple.

This gives us a way to detect well-spaced triples in O(n log n) be-
cause we can do the polynomial multiplication using FFT in O(n log n).

12
No consecutive integers

Integer equations and multisets are the topics of the problem 1 in 1 Variation of Problem 1-72. on page
45 in N. Loehr. Combinatorics. Discrete
Mathematics and Its Applications. CRC
Press, 2017. ISBN 9781498780278

this note.

Problem

Determine the number of subsets of size k from set {1, 2, . . . , n}
that do not contain consecutive integers.

The number of subsets of size k from set {1, 2, . . . , n} (without any
constraints) is given by the binomial coefficient (n

k). Each subset of size
k can be represented as a word of length n from alphabet {⋆, 8} with k
8’s and n− k⋆’s: if i is in the subset then the corresponding word has
a 8 at position i otherwise it has a⋆ at position i. This representation
is clearly a bijection. The constraint of no consecutive integers in a
subset implies no adjacent 8’s in the corresponding word2. 2 For example given set {1, 2, 3, 4} the

subset {2, 4} corresponds to ⋆ 8 ⋆8.
The subset {1, 2} has consecutive inte-
gers and corresponds to 8 8⋆⋆. The
reason why we chose 8 to indicate in-
clusion into a subset will become clear
soon.

We will now associate words from {⋆, 8}n with other combinatorial
objects: the integer equations.

Definition 12.1. Given fixed integers m > 0 and t ≥ 0 a sequence
(z1, z2, . . . , zm) is an integer equation if ∀i : 1 ≤ i ≤ m : zi ∈N0 and

m

∑
i=1

zi = t

The number t is called the target of the integer equation.

Note that these are sequences and order matters. From an integer
equation (z1, z2, . . . , zm) we construct a {⋆, 8}t+m−1 word in the fol-
lowing way: start with z1 number of ⋆’s, then a 8, then z2 number of
⋆’s, then a 8 and so on finishing with the zm number of⋆’s which are
not followed by a 8. The word will contain exactly t ⋆’s and they will

no consecutive integers 59

need exactly m− 1 8 separators to know which stars belong to which
zi. It’s easy to verify that this encoding is also a bijection3. 3 As an example let m = 5 and target

t = 10. The sequence (1, 2, 1, 3, 3) is an
integer equation since

1 + 2 + 1 + 3 + 3 = 10

and it corresponds to the word

⋆ 8⋆⋆ 8⋆ 8⋆⋆⋆ 8⋆⋆⋆

This in turn corresponds to the subset
{2, 5, 7, 11} of set {1, . . . , 14}.

Lemma 12.2. If we set t = n − k (the number of ⋆’s) and from t + m −
1 = n we get m = k + 1 (the word length) then we can associate subsets
of size k from set {1, 2, . . . , n} with integer equations (z1, z2, . . . , zk+1) for
target n− k. The constraint of not having consecutive integers in the subsets
translates to integer equations (z1, z2, . . . , zk+1) where zi > 0 except for
z1 and zk+1 (the first and the last in the sequence). This follows from the
encoding not allowing adjacent 8’s so there need to be⋆’s separating the 8’s.

According to this association if we can count the number of integer
equations with all but the first and last zi strictly positive then we
also have the number of subsets with no consecutive integers. To get
there we will first count the number of anagrams, then the number of
multisets, then the number of integer equations and finally the number
of integer equations with all but the first and last zi strictly positive.
In what follows we will use n and k for other things before we bring it
back in the end to our initial problem.

Let’s start this journey with anagrams. Let {s1, s2, . . . , sk} be an
alphabet of distinct symbols. We can build words with these symbols,
for example s2s2s1s3s3s1. As a notational convenience sisisi . . . si = sj

i
if si appears j consecutive times in a word, so the example would be
s2

2s1s2
3s1.

Definition 12.3. A word is an anagram4 of sn1
1 sn2

2 . . . snk
k with ni > 0 4 For example given word a2b the words

aba and baa are anagrams of it. The word
abb is not.

if it is a word containing exactly ni number of si symbols for each
1 ≤ i ≤ k. We denote with A(sn1

1 sn2
2 . . . snk

k) the set of all anagrams of
sn1

1 sn2
2 . . . snk

k .

Theorem 12.4. Given the set of anagramsA(sn1
1 sn2

2 . . . snk
k) let n = ∑k

i=1 nk.
Then

|A(sn1
1 sn2

2 . . . snk
k)| =

(
n

n1, n2, . . . , nk

)
where (n

n1,n2,...,nk
) is the multinomial coefficient5. 5 The multinomial coefficient is defined

as (
n

n1, n2, . . . , nk

)
=

n!

∏k
i=1 ni !

Proof. We have n positions in our word that we need to fill with sym-
bols. We are going to make the following choices: first we choose
n1 positions from those n positions where we fill in the symbol s1.
Then we choose the n2 positions from the remaining unfilled positions
where we fill in s2 and so on. In total we make k such choices and the
number of remaining unfilled positions at each stage is independent
of the previous choices, so the multiplication rule applies. For our first
symbol s1 we have (n

n1
) possibilities, for our second symbol we have

(n−n1
n2

) possibilities and so on. Because of the multiplication rule the
total number of choices is the product of all these binomial coefficients,

60 math scrapbook

so

|A(sn1
1 sn2

2 . . . snk
k)| =

k

∏
i=1

(
n− (∑i−1

j=1)

ni

)
Expanding6 the binomial coefficients on the right-hand side into fac- 6 After the binomial coefficients are ex-

panded the product becomes a telescop-
ing product that simplifies to exactly the
multinomial coefficient.

torials according to the binomial coefficient definition and simplifying
the expression gives us the desired result.

We move on to multisets. Informally multisets are sets (order does
not matter) where each element can appear more than once. So given a
set A (the alphabet) a multiset is a tuple of A together with a function
µ : A 7→N that determines how often an element a ∈ A appears in the
multiset. For notational convenience we will use curly braces and list
elements (with exponents if they appear more than once). For example
{a2, b, c4} is a multiset where a appears twice, b once and c four times.
Note that order does not matter, so {a2, b, c4} is the same multiset as
{b, a2, c4}. The size of the multiset is the number of elements in it with
elements appearing more than once counted accordingly, so

|(A, µ)| = ∑
a∈A

µ(a)

Theorem 12.5. The number of multisets of size k from an alphabet set of size
n is7 7 For example with alphabet set {a, b}

the multisets of size two are {a2}, {b2},
{a, b}, so there are three of them.

(
k + n− 1

k

)
Proof. We will do an encoding of multisets to anagrams similar to what
we did at the beginning of this section with ⋆’s and 8’s. To avoid
confusion with that previous encoding in this proof we will use the
symbols ◦ and |.

Let A = {a1, a2, . . . , an} be our alphabet. For a multiset (A, µ) with
size k we define the following word8 with symbols {◦, |}: 8 The multisets from the previous exam-

ple would be encoded as follows:

{a2} 7→ ◦ ◦ |
{b2} 7→ | ◦ ◦
{a, b} 7→ ◦|◦

◦µ(a1)| ◦µ(a2) | . . . |◦µ(an)

The first circles denote how often a1 is in the multiset. They are sepa-
rated by a | from the circles that denote how often a2 is in the multiset
and so on. In total there are k circles because the multiset has size k
and there need to be n− 1 separators because the alphabet has size n
and the circles for each element need to be kept apart. It’s easy to see
that we have defined a bijection from the set of multisets of size k with
alphabet of size n to the set of anagrams A(◦k|n−1). From theorem
12.4 we already know how to count the size of A(◦k|n−1) and with the
bijection it proves this theorem.

Our next stop are the number of integer equations. Given m and t
how many integer equations (z1, z2, . . . , zm) for target t are there?

no consecutive integers 61

Theorem 12.6. The number of integer equations (z1, z2, . . . , zm) for target t
is (

t + m− 1
t

)
Proof. We will associate a multiset with each integer equation9. The 9 For example with m = 5 and tar-

get t = 10 the integer equation
(1, 2, 1, 3, 3) would correspond to multi-
set {1, 22, 3, 43, 53}.

multiset will contain the element i zi many times, for 1 ≤ i ≤ m.
Again it can be checked that this defines a bijection. These multisets
belong to the set of multisets of size t from an alphabet of size m and
theorem 12.5 counts them. By the bijection rule we have proven this
theorem.

We are almost done. In the beginning of this section we encoded
our subsets without consecutive integers as integer equations with all
but the first and last summand strictly positive. So we need to count
these types of integer equations with this constraint.

Theorem 12.7. The number of integer equations (y1, y2, . . . , ym) for target
t with yi > 0 for all 1 < i < m is(

t + 1
m− 1

)
Proof. For an integer equation (y1, y2, . . . , ym) we have ∑m

i=1 yi = t and
yi > 0 for all 1 < i < m. So we can write

y1 +
m−1

∑
i=2

(yi − 1) + ym = t− (m− 2)

This shows that we can transform the integer equations with the strictly
positive constraints into normal integer equations without constraints
but with a new target. This again is a bijection. We know how to count
these from theorem 12.6. The new target is t− m + 2. Plugging it in
we get (

t−m + 2 + m− 1
m− 1

)
=

(
t + 1
m− 1

)

Using 12.7 and t = n− k and m = k + 1 as described by our asso-
ciation 12.2 of subsets of size k without consecutive integers from set
Nn to integer equations with all but the first and last strictly positive
terms, we are finally able to solve the problem in this section. The
answer is (n−k+1

k).

13
Paying a dollar

Problem

In how many combinations of half-dollars, quarters, dimes,
nickels and pennies can you pay out one dollar ? You can
assume you have enough coins for any combination and any
coins of one denomination are indistinguishable.

We will look at tuples (h, q, d, n, p) where h is the number of half-
dollars, q the number of quarters, d the number of dimes, n the number
of nickels and p the number of pennies. We want to consider all tuples
(h, q, d, n, p) such that:

50h + 25q + 10d + 5n + p = 100

We want to determine how many such tuples exist. Let’s establish
what the possible values for h, q, d, n and p can be:

Denomination Possible Values Values range size

h 0, 1, 2 3

q 0, 1, 2, 3, 4 5

d 0, . . . , 10 11

n 0, . . . , 20 21

p 0, . . . , 100 101

Clearly h, q, d, n and p cannot take values outside of the ones listed
because it would violate the requirement: 50h + 25q + 10d + 5n + p =

100.
The multiplicity principle tells us there are 3 ∗ 5 ∗ 11 ∗ 21 ∗ 101 =

349965 distinct tuples from the possible values.
But not all of them fulfill 50h + 25q + 10d + 5n + p = 100. To figure

out how many of them do let’s introduce the following notation:

paying a dollar 63

#(h, q, d, n, p)x = |{(h, q, d, n, p) : 50h + 25q + 10d + 5n + p = x}|

so #(h, q, d, n, p)x is the number of tuples of half-dollars, quarters,
dimes, nickels and pennies that add up to x. We are looking for
#(h, q, d, n, p)100.

We also use #(q, d, n, p)x for tuples of quarters, dimes, nickels and
pennies that add up to x, #(d, n, p)x for dimes, nickels and pennies that
add up to x etc.

The half-dollar denomination has the smallest values range size so
it’s probably in our favor to start with it and break down the problem
into smaller problems from there. It is clear that

#(h, q, d, n, p)100 = #(q, d, n, p)100 + #(q, d, n, p)50 + #(q, d, n, p)0

because #(q, d, n, p)100 comes from h taking value 0, #(q, d, n, p)50

from h taking value 1 and #(q, d, n, p)0 from h taking value 2. Contin-
uing down this path and breaking down the q cases:

#(q, d, n, p)100 = #(d, n, p)100 + #(d, n, p)75+

#(d, n, p)50 + #(d, n, p)25 + #(d, n, p)0

#(q, d, n, p)50 = #(d, n, p)50 + #(d, n, p)25 + #(d, n, p)0

#(q, d, n, p)0 = #(d, n, p)0

This is getting tedious though. Maybe we can find a closed-form
formula for #(d, n, p)x. Let’s try to find one for #(n, p)x first.

Lemma 13.1. If x = 5y then

#(n, p)x = y + 1

Proof. n can take values in range 0, . . . , y and for each value of n there
is only one possible value of p = x− 5n.

Lemma 13.2. If x is a multiple of 5 then

#(d, n, p)x =

(y + 1)2 if x = 10y

(y + 1)(y + 2) if x = 10y + 5

Proof. Let’s deal with the case x = 10y first.

64 math scrapbook

#(d, n, p)x =
y

∑
k=0

#(n, p)x−10k

=
y

∑
k=0

#(n, p)10(y−k)

=
y

∑
k=0

#(n, p)10k

=
y

∑
k=0

(2k + 1)

= (y + 1)2

The case x = 10y + 5 is established in a similar fashion.

We can now use the two lemmas to compute the number of combi-
nations:

#(h, q, d, n, p)100 = #(d, n, p)100 + #(d, n, p)75+

2#(d, n, p)50 + 2#(d, n, p)25 + 3#(d, n, p)0

= 112 + 8 ∗ 9 + 2 ∗ 62 + 2 ∗ 3 ∗ 4 + 3

= 292

14
Penn & Teller Full Deck of Cards

Counting words with constraints is the topic of the problem in
this note. This problem was posed by a coworker at a lunch discussion.

Problem

When you go see the Penn & Teller Magic Show in Las Vegas
you can get a random card from the Perfectly Ordinary Deck
of Cards at the entrance. How many times do you have to see
the show to collect the full deck.

We assume the supply of cards at the entrance is endless and thor-
oughly shuffled. This allows us to work with a probability model
of drawing with replacement where each card is equally likely to
be drawn with probability 1

52 . At each visit we draw a card1. Af- 1 You can get two cards at each visit to
the show in Las Vegas. Drawing only
one card is a simplification to keep the
expressions smaller. The case with two
cards is similar but the expressions get
a little bigger because you have more
cases of the card sequence right before
the visit that achieves full deck. We will
point out the differences at the end of
this note.

ter k visits we have built up a sequence of cards which we model
as a word wk = (c1, c2, . . . , ck) of size k from an alphabet of size 52
(∀ci : ci ∈ {1, . . . , 52}). Our random variable X is the number of visits
needed to achieve a full deck. The probability P(X = k) means that it
took k visits to achieve the full deck.

The key observation is this: if it took k visits to achieve full deck then
at visit k− 1 the corresponding word of cards wk−1 = (c1, c2, . . . , ck−1)

is missing just one card and all the other cards appear at least once in
the word2. 2 It might be easier to see this with a con-

crete card. Imagine you are drawing an
ace of spades at visit k and getting the
full deck. This means that before the
visit k you are still missing the ace of
spades. If not, then drawing the ace of
spades at visit k wouldn’t complete the
deck. Getting the full deck at visit k
also means that you are not missing any
other cards before the visit k, otherwise
if one of the other cards would be miss-
ing then drawing an ace of spades again
wouldn’t complete the deck.

LetA = {1, 2, . . . , 52} be our alphabet and Lk(A) = {(c1, c2, . . . , ck) :
∀i : 1 ≤ i ≤ k : ci ∈ A} the set of all the words of length k with letters
(cards) from the alphabet A. Let Mk(c) be the set of words of length k
where letter c does not occur in the word and every other letter occurs
at least once:

66 math scrapbook

Mk(c) = {(c1, c2, . . . , ck) :(∀i : 1 ≤ i ≤ k : ci ∈ A ∧ ci ̸= c)∧
(∀d ∈ A \ {c} : ∃i : 1 ≤ i ≤ k : ci = d)}

So now let us assume that at visit k we draw letter c and get the full
deck. From our previous argument above we know that then the word
wk−1 we built in the previous k− 1 visits has to be in Mk−1(c).

The probability that at visit k we draw letter c and get the full deck
is thus the probability of drawing card c times the probability that
wk−1 ∈ Mk−1(c). It follows that:

P(X = k) = ∑
c∈A

1
|A|
|Mk−1(c)|
|Lk−1(A)|

As we will see below, |Mk−1(c)| is the same for all cards c, so for
some fixed card c0 we have ∀c ∈ A : |Mk−1(c)| = |Mk−1(c0)|. Then

P(X = k) =
|Mk−1(c0)|
|Lk−1(A)| ∑

c∈A

1
|A| =

|Mk−1(c0)|
|Lk−1(A)|

We already know that

|Lk−1(A)| = |A|k−1

What is left to do to compute P(X = k) is count |Mk−1(c0)|. To
avoid carrying around the k − 1 we will count |Mk(c0)| instead and
adjust afterwards.

How do we compute |Mk(c0)| ? We have two constraints on the
words in wk = (c1, c2, . . . , ck) ∈ Mk(c0):

constraint C1 : ∀i : 1 ≤ i ≤ k : ci ∈ A ∧ ci ̸= c0

constraint C2 : ∀d ∈ A \ {c0} : ∃i : 1 ≤ i ≤ k : ci = d

Constraint C1 is easy to satisfy: we just use the alphabet without
letter c0: A1 = A \ {c0}.

For constraint C2 we could try to eliminate all the subsets of Lk(A1)

with words missing one letter from A1, all the subsets with words
missing two letters from A1 and so on all the way to subsets with
words missing all but one letter from A1. Something like this:

|Mk(c0)| = |Lk(A1)| − ∑
B⊂A1

|Lk(A1 \ B)|

penn & teller full deck of cards 67

But we have to be careful here. The subsets that we aim to eliminate
are not disjoint and this would lead to overcounting3. So instead the 3 Subsets with two missing letters are

also subsets with one missing letter.
Subsets with three missing letters are
also subsets with two missing letters
and subsets with one missing letter.
And so on. It is indeed a use case
for the inclusion-exclusion principle in
combinatorics:
Wikipedia. Inclusion–exclusion
principle — Wikipedia, the
free encyclopedia. http:

//en.wikipedia.org/w/index.php?

title=Inclusion%E2%80%93exclusion%

20principle&oldid=1086507513, 2022.
[Online; accessed 07-May-2022].

correct way to count this is:

|Mk(c0)| =
|A1|−1

∑
i=0

(−1)i ∑
B⊂A1,|B|=i

|Lk(A1 \ B)|

There are (|A1|
i) subsets B of size i and for each |Lk(A1 \ B)| =

(|A1| − i)k. It follows that

|Mk(c0)| =
|A1|−1

∑
i=0

(−1)i
(|A1|

i

)
(|A1| − i)k

We have all the pieces now. We can adjust back to k − 1 and also
use |A| = 52 to make a nice, closed formula for P(X = k):

P(X = k) =
1

52k−1

50

∑
i=0

(−1)i
(

51
i

)
(51− i)k−1

Plugging this into Mathematica we can see the distribution and the
cumulative distribution:

0 200 400 600 800 1000

0.002

0.004

0.006

0.008

0.010

http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
https://www.wolframcloud.com/obj/75d50b79-164a-4bed-a4b5-7592d2488169

68 math scrapbook

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

It looks like around 400 visits will most likely get you a full deck. It
might be cheaper to buy the full deck from the Penn & Teller online
store.

penn & teller full deck of cards 69

It is always a good idea to double-check our result with a simula-
tion4. The Python program below runs trials and records the number 4 This is how I discovered a bug in my

initial calculation. The listing is from my
coworker that suggested the problem.

of visits necessary for a full deck:

Listing 14.1: Simulation

import random

def t r i a l () :
cards = [Fa l se] * 52

v i s i t s = 0

while not a l l (cards) :
v i s i t s += 1

cards [random . randint (0 , 5 1)] = True
return v i s i t s

def main () :
num_tr ia ls = 100000

t r i a l s = [t r i a l () for _ in range (0 , num_tr ia ls)]
t r i a l s . s o r t ()
print (f "n={ num_tr ia ls } ")
print (f " p0 : { t r i a l s [0] } ")
print (f " p25 : { t r i a l s [num_tr ia ls >> 2] } ")
print (f " p50 : { t r i a l s [num_tr ia ls >> 1] } ")
print (f " p75 : { t r i a l s [(num_tr ia ls >> 2) * 3] } ")
print (f " p100 : { t r i a l s [num_tr ia ls − 1] } ")

i f __name__ == " __main__ " :
main ()

The results confirm that at least we are not orders of magnitude off:

n=100000

p0 : 95

p25 : 190

p50 : 225

p75 : 269

p100 : 822

As promised, what are the differences when two cards are drawn
at each visit. The constraints on the words right before the visit that
achieves full deck are a little bit more complicated: there could be one
or two cards missing. When one card is missing, the missing card
could come in once or twice on the last visit. That’s more or less
it. Working out a closed formula for this is left as an exercise to the
reader.

15
Points on circle

Problem

N distinct points, numbered from 0 onwards, are located on a
circle (in the rest of this problem all point numbers are taken
modN). Point i + 1 is the clockwise neighbor of point i. An in-
teger array, dist[0 . . . N), is given such that dist.i is the distance
(along the circle) between points i and i + 1. Derive a program
to determine whether four of these points form a rectangle.

We adopt the same notation used in Programming in the 1990s 1 and 1 Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

Programming, The Derivation of Algorithms2: The notation of function

2 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

application is the "dot" notation with name of function, followed by
arguments, each separated by a dot. The notation of quantified ex-
pressions has the operator followed by the bounded variables, then a
colon followed by the range for the bounded variables and ended with
a colon and the actual expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the following
notation:

A
= {reason why A equals B}

B
≤ {reason why B is less than C}

C

We are asked to solve S in

∥[

points on circle 71

con N : int; {N ≥ 4}
dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}

var r : bool;
S

{r : r ≡ (∃ 4 points that form a rectangle)}
]∥

Let’s first develop a more manageable postcondition. Evidently four
points that form a rectangle is equivalent to two pairs of diametral
opposing points. We introduce a function for the set of all indices
from point x to point y in clockwise direction along the circle:

I : [0, . . . , N)→ [0, . . . , N)→ 2[0,...,N)

I.x.y :=

[x, . . . , y) , x ≤ y

[x, . . . , N)
⋃

[0, . . . , y) , x > y

Let C be the circumference of the circle. We define function

f : [0, . . . , N)→ [0, . . . , N)→ int
f .x.y := C− 2(∑ i : i ∈ I.x.y : dist.i)

We want to find the number of diametral opposing pairs of points:

∥[
con N : int; {N ≥ 2}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var r : int;

S
{r : r = (# x, y : 0 ≤ x < N, 0 ≤ y < N : f .x.y = 0)}

]∥

Lemma 15.1. The function f is increasing in its first argument and decreas-
ing in its second argument.

Proof. f is increasing in its first argument:

f .(x + 1).y
= {definition of f }

C− 2(∑ i : i ∈ I.(x + 1).y : dist.i)
= {I.(x + 1).y = I.x.y \ {x}}

C− 2((∑ i : i ∈ I.x.y : dist.i)− dist.x)
= {definition of f }

f .x.y + 2dist.x
> {dist.x > 0}

f .x.y

72 math scrapbook

f is decreasing in its second argument:

f .x.(y + 1)
= {definition of f }

C− 2(∑ i : i ∈ I.x.(y + 1) : dist.i)
= {I.x.(y + 1) = I.x.y

⋃ {y}}
C− 2((∑ i : i ∈ I.x.y : dist.i) + dist.y)

= {definition of f }
f .x.y− 2dist.y

< {dist.y > 0}
f .x.y

Looking at the postcondition

{r : r = (# x, y : 0 ≤ x < N, 0 ≤ y < N : f .x.y = 0)}

we define the function

G.a.b = (# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)

and we will maintain the invariants:

P0 : G.0.0 = r + G.a.b
P1 : 0 ≤ a ≤ N
P2 : 0 ≤ b ≤ N

The initial values r, a, b := 0, 0, 0 satisfy the invariants and

a = N ∨ b = N ⇒ G.a.b = 0⇒ r = G.0.0

establishes the postcondition, so we can stop when a = N ∨ b = N.
So far we have

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, r : int;
a, b, r := 0, 0, 0;
do a ̸= N ∧ b ̸= N

S
od
{r : r = G.0.0}

]∥

points on circle 73

We need to increment a, b and maintain the invariants:

G.a.b
= {definition of G}

(# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split x = a}

G.(a + 1).b + (#y : b ≤ y < N : f .a.y = 0)
= { f is decreasing in second argument (15.1), and assume f .a.b < 0}

G.(a + 1).b

so f .a.b < 0⇒ G.a.b = G.(a + 1).b. Similarly

G.a.b
= {definition of G}

(# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split y = b}

G.a.(b + 1) + (#x : a ≤ y < N : f .x.b = 0)
= { f is increasing in second argument (15.1), and assume f .a.b > 0}

G.a.(b + 1)

so f .a.b > 0⇒ G.a.b = G.a.(b + 1). Also for the case f .a.b = 0 we have

r + G.a.b
= {definition of G}

r + (# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split x = a}

r + G.(a + 1).b + (#y : b ≤ y < N : f .a.y = 0)
= { f is decreasing in second argument (15.1), and assume f .a.b = 0}

(r + 1) + G.(a + 1).b

Our program becomes

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, r : int;
a, b, r := 0, 0, 0;
do a ̸= N ∧ b ̸= N

if
□ f .a.b > 0→ b := b + 1
□ f .a.b < 0→ a := a + 1
□ f .a.b = 0→ a, r := a + 1, r + 1
fi

od
{r : r = G.0.0}

]∥
We cannot have f in the program text so the last thing we have to
do is eliminate f . We do this by introducing a new variable c : int

74 math scrapbook

and maintaining the additional invariant P3 : c = f .a.b. Lemma 15.1
already showed us the expressions for f when the first or the second
argument increase, so our final program looks like this3 3 The program is bound by the function

2N − a − b so it is O(N). The solution
is an example of the slope search tech-
nique.

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, c, r : int;
a, b, c, r := 0, 0, C, 0;
do a ̸= N ∧ b ̸= N

if
□ c > 0→ b, c := b + 1, c− 2dist.b
□ c < 0→ a, c := a + 1, c + 2dist.a
□ c = 0→ a, c, r := a + 1, 2dist.a, r + 1
fi

od
{r : r = G.0.0}

]∥

16
Prison Cells

Problem

A prison has n cells with all cell doors shut initially. The warden
is a little weird so he walks the whole row of cells and opens
every cell door. Then he walks the whole row again and shuts
every other cell door. Then he walks the whole row again and
opens every third door then walks the row again and shuts ev-
ery 4th door etc. You can assume that the doors are numbered
0 to (n − 1) and the warden always starts at zero and walks
them in order. Which doors will stay open when the warden is
done ?

Each time the warden walks the row of cells he toggles the state
(open or close) of some of the cells. It is clear then that the number of
toggles to one cell determines if it is open or closed in the end. In the
beginning each cell door is closed so if the number of toggles is even
then it stays closed, if it is odd then it is open at the end.

The goal then is to calculate the number of toggles for a cell. The
cells are numbered 0 to (n− 1) so lets try to calculate the number of
toggles for cell k. The first time the warden walks the row of cells he
toggles each cell including our cell k. The second time he toggles cells
0, 2, 4, That means he toggles cell k if k is even. The third time
around he toggles cells 0, 3, 6, . . . so he toggles cell k if k is a multiple
of 3. If we continue we see that the cell k gets toggled on the warden’s
d walk if k is a multiple of d or said differently if d divides k.

It follows that the number of toggles T(k) for cell k is

T(k) = ∑
d|k

1.

This is already pretty good but for the expression above it’s not so

76 math scrapbook

obvious for which k T(k) will be even and for which it will be odd. So
we will make a short excursion into basic number theory in the hopes
that we can transform the expression into something more revealing.

A little number theory

We say that two integers m and n are relatively prime if the only com-
mon divisors are ±1 and we write (m, n) = 1 in that case.

Definition 16.1. A function f : N → Ω with Ω a field is said to be
weakly multiplicative if

∀ m, n ∈N : (m, n) = 1 ⇒ f (mn) = f (m) f (n).

Theorem 16.2. If f is a weakly multiplicative function then so is the function

g(n) = ∑
d|n

f (d).

Proof. Let m1, m2 ∈N with (m1, m2) = 1. Let’s define two sets

S1 = {d : d | m1m2}, S2 = {d1d2 : d1 | m1 ∧ d2 | m2}.

It is obvious that S2 ⊆ S1. On the other hand

∀x ∈ S1 ⇝ x | m1m2 (by definition)
Let k = (x, m1), so x = yk, m1 = zk, for some y, z ∈N and (y, z) = 1
x | m1m2 ⇝ yk | zkm2 ⇝ y | m2 because (y, z) = 1
This means x = yk ∈ S2 because y | m2 ∧ k | m1.

So we have S1 = S2. We can now write

prison cells 77

g(m1m2)

= < definition of g >

(∑ d : d | m1m2 : f (d))
= < index sets S1 = S2 so we change bounded variables >

(∑ d1, d2 : d1 | m1 ∧ d2 | m2 : f (d1d2))

= < f is weakly multiplicative and (d1, d2) = 1 >

(∑ d1, d2 : d1 | m1 ∧ d2 | m2 : f (d1) f (d2))

= < nesting >

(∑ d1 : d1 | m1 : (∑ d2 : d2 | m2 : f (d1) f (d2)))

= < multiplication distributes over addition >

(∑ d1 : d1 | m1 : f (d1)(∑ d2 : d2 | m2 : f (d2)))

= < definition of g >

(∑ d1 : d1 | m1 : f (d1)g(m2))

= < multiplication distributes over addition >

(∑ d1 : d1 | m1 : f (d1))g(m2)

= < definition of g >

g(m1)g(m2).

which proves the theorem.

The theorem tells us that the function T(k) which is the number of
toggles for cell k

T(k) = ∑
d|k

1.

is in fact a weakly multiplicative function because the function inside
the sum (the constant function 1) is trivially a weakly multiplicative
function.

A more detailed solution

If we use the unique prime factorization of k

k = pa1
1 pa1

1 . . . pah
h

and use the fact that (pai
i , p

aj
j) = 1 we get

T(k) =
h

∏
i=1

T(pai
i).

But it’s easy to see that T(pai
i) = ai + 1 so we have

T(k) =
h

∏
i=1

(ai + 1).

When is T(k) even ? When any of the ai are odd. To find out if a cell
is open or closed do the prime factorization and look at the exponents
of the primes. If any of them is odd then the cell stays closed.

17
0-1 Sequences

Counting inversions is the topic of the problem 1 in this note. 1 Tung Kam Chuen. 0-1 sequences.
2016. URL https://open.kattis.com/

problems/sequences

Problem

You are given a sequence, in the form of a string with characters ‘0’, ‘1’, and ‘?’ only. Suppose there
are k ‘?’s. Then there are 2k ways to replace each ‘?’ by a ‘0’ or a ‘1’, giving 2k different 0-1 sequences
(0-1 sequences are sequences with only zeroes and ones).
For each 0-1 sequence, define its number of inversions as the minimum number of adjacent swaps
required to sort the sequence in non-decreasing order. In this problem, the sequence is sorted in non-
decreasing order precisely when all the zeroes occur before all the ones. For example, the sequence
11010 has 5 inversions. We can sort it by the following moves: 11010 → 11001 → 10101 → 01101 →
01011→ 00111.
Find the sum of the number of inversions of the 2k sequences, modulo 109 + 7.

There are two ways to count the necessary inversions to sort the 2k

0-1 sequences: we could count for each ’0’ how many ’1’ to its left are
marching by in the right direction on their way to being sorted. Or we
could count for each ’1’ how many zeros to its right are marching by
in the left direction on their way to being sorted.

We arbitrary choose the first way of counting the inversions.
In the sequence b = (b0, b1, . . . , bn− 1) with characters ‘0’, ‘1’, and

‘?’ we will look at each position i where b[i] = ‘0’ and each position i
where b[i] = ‘?’.

We define q(i) to be the number of question marks to the left of i
and o(i) to be the number of ones to the left of i:

q(i) = |{j : 0 ≤ j < i : b[j] = ‘?’}|
o(i) = |{j : 0 ≤ j < i : b[j] = ‘1’}|

https://open.kattis.com/problems/sequences
https://open.kattis.com/problems/sequences

0-1 sequences 79

Let s(i) be the number of inversions coming from b[i]. When b[i] =
‘1’ we set s(i) = 0 so as to not overcount2. 2 We chose to count ones marching right,

passing zeros.When b[i] = ‘0’ we know that all 2k
0-1 sequences will have o(i)

ones to the left of i. These definitely will count in s(i). We also need
to consider all ones coming from setting ‘?’ into ‘1’ to the left of i.
There are q(i) possibilities here. For each j : 1 ≤ j ≤ q(i) we can
turn j question marks into ones. We have to choose the subset of size
j of positions from the set of q(i) positions with question marks3. It 3 As a convenience we label the q(i) po-

sitions with question marks as position
1, 2, . . . q(i).

follows that:

s(i) = 2ko(i) + 2k−q(i)(
q(i)

∑
j=1

(
q(i)

j

)
j)

There is a neat way to simplify the sum with the binomial above
using a combinatorial proof: Given a set of people of size N, count in
how many ways you can choose a team and from that team choose a
leader. There are two ways to count here. In the first way count the
number of ways to choose a leader: N ways. Then count the number
of ways to choose the rest of the team, which is the number of subsets
from the set of people without the leader, so 2N−1. In the second way
for each possible team size, count the number of possible teams and
then count the number of possible leader in that team. Because both
ways count the same things, we have:

N2N−1 =
N

∑
j=1

(
N
j

)
j

Applied to our s(i) we get:

s(i) = 2ko(i) + 2k−q(i)q(i)2q(i)−1

= 2ko(i) + 2k−1q(i)

For b[i] = ‘?’ we do a similar calculation4, with the only difference 4 We instantiate this question mark as a
zero. The case where this position gets
instantiated as a one is covered by other
zero positions.

being the number of question marks to the right of i: 2k−q(i)−1 (one less
than in the previous calculation, since position i is a question mark).
We get:

s(i) = 2ko(i) + 2k−2q(i)

The two cases cover all the counts and we can write the following
loop (in Go, leaving out the modulus optimizations):

80 math scrapbook

seen_ones := 0

seen_qmarks := 0

num_inversions := 0

for i : = 0 ; i < n ; i ++ {
switch {
case b [i] == ’ 0 ’ :

num_inversions += 2^k * seen_ones + 2^(k−1) * seen_qmarks
case b [i] == ’ 1 ’ : seen_ones++
case b [i] == ’ ? ’ :

num_inversions += 2^k * seen_ones + 2^(k−2) * seen_qmarks
seen_qmarks++

}
}

For a more complete implementation in C++, see
https://github.com/uwedeportivo/kattis/tree/main/sequences.

https://github.com/uwedeportivo/kattis/tree/main/sequences

18
Last three digits before decimal point

Recurrence relations and modulo arithmetic are the topics of the
problem 1 in this note. 1 Cosmin Negruseri. Code-

jam 2008 round 1a: Problem
c: Numbers. 2008. URL
https://code.google.com/codejam/

contest/32016/dashboard#s=p2

Problem

Find the last three digits before the decimal point for the num-
ber (3 +

√
5)n. For example, when n = 5, (3 +

√
5)5 =

3935.73982 . . ., the answer is 935. For n = 2, (3 +
√

5)2 =

27.4164079 . . ., the answer is 027. The value of n is in the range
2 ≤ n ≤ 2000000000.

Looking at the numbers (3 +
√

5)n, we can see that in general they
are not integers. Ideally we would like to deal with integers. This
sparks the idea of introducing the complement of (3 +

√
5) into the

mix, namely (3 −
√

5). Let’s look at the binomial expansion 2 of 2 Binomial expansion:

(a + b)n =
n

∑
i=0

(
n
i

)
aibn−i

(3 +
√

5)n:

(3 +
√

5)n =
n

∑
i=0

(
n
i

)
3i(
√

5)n−i

Compare this to the binomial expansion of (3−
√

5)n:

(3−
√

5)n =
n

∑
i=0

(
n
i

)
3i(−
√

5)n−i

When n− i is even, then (
√

5)n−i and (−
√

5)n−i are integers. When
n− i is odd, then the binomial terms for (

√
5)n−i and (−

√
5)n−i in the

binomial expansions cancel each other out. So it follows that

∀n ∈N : (3 +
√

5)n + (3−
√

5)n ∈N

https://code.google.com/codejam/contest/32016/dashboard#s=p2
https://code.google.com/codejam/contest/32016/dashboard#s=p2

82 math scrapbook

This is encouraging, so we define for all n:

an = (3 +
√

5)n

bn = (3−
√

5)n

cn = an + bn

We see that ∀n ∈N : 0 < bn < 1, so cn = ⌈an⌉.
Concentrating on cn, lets try to find the hundreds digit, the tens

digit and the units digit of cn.
Consider the polynomial:

(x− (3 +
√

5))(x− (3−
√

5)) = x2 − 6x + 4

It leads to the recurrence relation: fn = 6 fn−1 − 4 fn−2, for which any
linear combination of an and bn is a solution 3. We set the initial values 3 In-depth treatment of recurrence re-

lations can be found in Chapter 10,
Ralph P. Grimaldi. Discrete and Combi-
natorial Mathematics: An Applied Introduc-
tion. Addison-Wesley, 3rd edition, 1993.
ISBN 0201549832

of fn such that the linear combination cn = an + bn is the solution:
f0 = 2, f1 = 6.
Therefore cn satisfies the recurrence:

cn = 6cn−1 − 4cn−2

c0 = 2

c1 = 6

In theory we could just use this recurrence to compute cn and then
extract the hundreds digit, the tens digit and the units digit. Unfor-
tunately this is not feasible for large n, since cn grows quickly to very
large values. But since we only need the last three digits of the val-
ues, we don’t need to compute the values completely, computing them
modulo 1000 will suffice.

Fortunately according to modulo arithmetic, the recurrence relation
for cn is still valid when doing modulo 1000. Let:

dn ≡ cn mod 1000

and so
dn ≡ 6dn−1 − 4dn−2 mod 1000

Now consider the ordered pairs (dn, dn+1), n ∈ N. Because dn ∈
{0, 1, 2, . . . , 999}, there are only 106 distinct pairs of (dn, dn+1) possi-
ble. So it must be that there exist two indices i, j ∈N+ such that:

(di, di+1) = (dj, dj+1)

From the recurrence it follows that:

∀k ∈N : (di+k, di+k+1) = (dj+k, dj+k+1)

(d0, d1) (d1, d2) (d2, d3) (d3, d4) (d4, d5)
(d5, d6)

(d6, d7)

(d7, d8)

(d8, d9)

(d9, d10)
(d10, d11)

(d11, d12)

(d12, d13)

(d13, d14)

(d14, d15)

Figure 18.1: Periodic sequence of pairs
preceded by a prefix of pairs.

last three digits before decimal point 83

The sequence of ordered pairs (dn, dn+1) is periodic with a period
p of at most 106. We can construct a lookup table holding values of dn

from one period p and then compute dn for large n by going into the
lookup table at n mod p.

The periodic part of the sequence doesn’t necessarily start with the
first pair in the sequence or with the second or the third etc... There
might be a sequence prefix of ordered pairs that don’t repeat before it
goes into the sequence loop of repeating pairs. We write a function
that computes the prefix and the period of the sequence using Floyd’s
cycle finding algorithm4. 4 Floyd’s algorithm is described at

https://en.wikipedia.org/wiki/

Cycle_detection#Tortoise_and_hare.
We use the Haskell implementation
from https://wiki.haskell.org/

Floyd’s_cycle-finding_algorithm

Luckily it turns out that in this case the prefix is 2, 6, 28 and the
periodic sequence has period 100.

With the lookup table we can compute dn for any large n in constant
time. dn gives us the last three digits of cn. Our goal though was to
compute the last three digits before the decimal point of an.

We know cn = ⌈an⌉, so cn − 1 = ⌊an⌋. This means that to get the
digits for an, we need to extract them from dn − 1. Listing 18.1 has the
complete Haskell implementation.

Listing 18.1: Haskell code to compute last 3 digits

module L a s t 3 D i g i t s (
compute

) where

f : : Int −> Int −> Int
f a b = (6 * b − 4 * a) ‘mod‘ 1000

−− ds i s our s e q u e n c e o f d_n
ds = 2 : 6 : zipWith (f) ds (t a i l ds)
−− t h i s g i v e s us t h e p a i r s
dps = zip ds (t a i l ds)

f indCycle : : Eq a => [a] −> ([a] , [a])
f indCycle xxs = fCycle xxs xxs

where fCycle (x : xs) (_ : y : ys)
| x == y = f S t a r t xxs xs
| otherwise = fCycle xs ys

fCycle _ _ = (xxs , []) −− not c y c l i c
f S t a r t (x : xs) (y : ys)
| x == y = ([] , x : fLength x xs)
| otherwise = l e t (as , bs) = f S t a r t xs ys in (x : as , bs)

fLength x (y : ys)
| x == y = []
| otherwise = y : fLength x ys

tps = f indCycle dps
−− ps i s t h e p r e f i x , c s t h e c y c l e o f d_n
(ps , cs) = (map f s t (f s t tps) , map f s t (snd tps))

https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
https://wiki.haskell.org/Floyd's_cycle-finding_algorithm
https://wiki.haskell.org/Floyd's_cycle-finding_algorithm

84 math scrapbook

computeAux : : Int −> Int
computeAux n

| n < (length ps) = ps ! ! n
| otherwise = cs ! ! ((n − (length ps)) ‘mod‘ (length cs))

compute : : Int −> Int
compute n = computeAux n − 1

To check our computation we can use this Mathematica function:

In[14]:= last3Digits[n_Integer] := Mod[IntegerPart[(3 + Sqrt[5])^n], 1000]

19
How many trailing zeros in n!

Greatest dividing exponent and its properties is the topic of the
problem in this note.

Problem

Write a program that calculates for an arbitrary positive integer
n how many trailing zeros there are in n!.

Let’s first try to figure out for any natural number n what the num-
ber of trailing zeros is. A useful concept here is the greatest dividing
exponent 1: 1 Eric W. Weisstein. Greatest divid-

ing exponent. From MathWorld—
A Wolfram Web Resource. URL
http://mathworld.wolfram.com/

GreatestDividingExponent.html

Definition 19.1. The greatest dividing exponent gde(n, b) of a base b
with respect to a number n is the largest integer value of k such that
bk | n, where bk ≤ n.

Lemma 19.2.

gde(n, ab) = min(gde(n, a), gde(n, b)), with (a, b) = 1

Proof. Assume gde(n, a) ≤ gde(n, b). Then agde(n,a) | n and bgde(n,a) | n,
with (agde(n,a), bgde(n,a)) = 1, so (ab)gde(n,a) | n. By definition of gde we
then have gde(n, a) ≤ gde(n, ab).

We also have (ab)gde(n,ab) | n, so agde(n,ab) | n. By definition of gde
we then have gde(n, a) ≥ gde(n, ab).

It follows that gde(n, a) = gde(n, ab).

It’s clear that the number of trailing zeros of n equals gde(n, 10).
From lemma 19.2 we are looking for min(gde(n!, 2), gde(n!, 5)).

http://mathworld.wolfram.com/GreatestDividingExponent.html
http://mathworld.wolfram.com/GreatestDividingExponent.html

86 math scrapbook

Lemma 19.3.

gde(n!, p) =
⌊logpn⌋

∑
k=1

⌊
n
pk

⌋
, for a prime p ≤ n

Proof. We define the following subsets of {1, . . . , n}:

Mk
p = {i : 1 ≤ i ≤ n : pk | i}

For k > ⌊logpn⌋ the sets Mk
p are empty, so we only consider k ≤

⌊logpn⌋. Each member of one set Mk
p contributes k to gde(n!, p), so the

whole set contributes k|Mk
p|. From pk | i it follows that also pk−1 | i,

so Mk
p ⊆ Mk−1

p for k = 2, . . . , ⌊logpn⌋. Being careful not to count the
contributions more than once we get:

gde(n!, p) =
⌊logpn⌋

∑
k=1

|Mk
p|

With |Mk
p| =

⌊
n
pk

⌋
we conclude the proof.

Lemma 19.4.
gde(n!, 2) ≥ gde(n!, 5) for any n ≥ 1

Proof. Plugging in the expression of gde from lemma 19.3 into the
claim of this lemma we get:

gde(n!, 2) ≥ gde(n!, 5)⇔
⌊log2n⌋

∑
k=1

⌊ n
2k

⌋
≥
⌊log5n⌋

∑
k=1

⌊ n
5k

⌋
We establish:

log2n ≥ log5n⇔ log2n ≥ log2n log52

⇔ 1 ≥ log52, which is true

For each 1 ≤ k ≤ ⌊log5n⌋ we have:⌊ n
2k

⌋
≥
⌊ n

5k

⌋
and for ⌊log5n⌋+ 1 ≤ k ≤ ⌊log2n⌋ we have:⌊ n

2k

⌋
> 0

Adding up the inequalities establishes the claim.

From the three lemmas we found that:

(number of trailing zeros in n!) = gde(n!, 10)

= min(gde(n!, 2), gde(n!, 5))

= gde(n!, 5)

=
⌊log5n⌋

∑
k=1

⌊ n
5k

⌋

how many trailing zeros in n! 87

so our program needs to calculate the expression:

⌊log5n⌋
∑
k=1

⌊ n
5k

⌋
The following small Haskell function does it:

Listing 19.1: Haskell code

gdefac : : Int −> Int

gdefac n = f s t (u n t i l (\ (x , y) −> y == 0)
(\ (x , y) −> l e t

y ’ = div y 5

in (x + y ’ , y ’))
(0 , n))

It works on tuples of numbers. It keeps dividing the second number in
the tuple by 5 until zero and adding the division results together into
the first number of the tuple. In the end it returns the first number in
the tuple.

20
Twelve Coins

Coin weighings are the topics of the problem 1 in this note. 1 Ethan Canin. The Palace Thief Stories,
chapter Batorsag and Szerelem, page 87.
Random House New York, 1994

or
Problem 1-111. on page 47 in N. Loehr.
Combinatorics. Discrete Mathematics and
Its Applications. CRC Press, 2017. ISBN
9781498780278

Problem

Of twelve coins, one is counterfeit and weighs either more or
less than all the others. The others weigh the same. With a
balance scale, on which one side may be weighed against the
other, you are to use only three weighings to determine the
counterfeit and its type (lighter or heavier).

We first present a hand-tailored solution for twelve coins.

There are many variations of coin
weighing problems. Some require
identifying the type of the counterfeit
(lighter or heavier), some don’t. Some
have more than one scale, some have
more than one counterfeit, some don’t
state the existence of the counterfeit,
some allow using scale weights or a
known genuine coin. The Wikipedia
page https://en.wikipedia.org/wiki/

Balance_puzzle has a good overview. In
this section we always want to find the
counterfeit coin (we know there is ex-
actly one counterfeit of unknown type)
and its type and our scale is a balance
scale with coins on both sides.

Let M be the set of coins, |M| = 12. We have weighing function

w : M→ {a, b}, a ̸= b, a, b ∈ R+.

We have |{c ∈ M : w(c) = a}| = 11 and |{c ∈ M : w(c) = b}| = 1. We
are asked to find c f ∈ M with w(c f) = b in three weighings.

For a subset S ⊆ M we define

w(S) = ∑
c∈S

w(c).

Let’s partition M into 3 subsets S0, S1, S2

S0 ∪ S1 ∪ S2 = M
∀ 0 ≤ i < 3 : |Si| = 4
∀ 0 ≤ i < j < 3 : Si ∩ Sj = ∅

At this point we consume the first weighing:

1st weighing: compare w(S1) with w(S2)

https://en.wikipedia.org/wiki/Balance_puzzle
https://en.wikipedia.org/wiki/Balance_puzzle

twelve coins 89

Case w(S1) = w(S2)

In this case c f ∈ S0. We partition S0 into S0 = S1
0 ∪ S3

0 with |S1
0| = 1

and |S3
0| = 3. We also consider S3

1, a subset of S1 with |S3
1| = 3. We

consume the second weighing:

2nd weighing: compare w(S3
0) with w(S3

1)

subcase 1: w(S3
0) = w(S3

1). In this subcase c f ∈ S1
0 and we’re done

after just two weighings.

subcase 2: w(S3
0) > w(S3

1). In this subcase S3
0 has the counterfeit coin

and b > a. We consume the third weighing: Let S3
0 = {c1, c2, c3}.

We weigh c1 against c2.

3rd weighing: compare w(c1) with w(c2)

If w(c1) = w(c2) then c f = c3, if w(c1) > w(c2) then c f = c1.

case 3: w(S3
0) < w(S3

1). In this case S3
0 has the counterfeit coin and

b < a. Analog to previous case (replace heavy with light).

Case w(S1) > w(S2)

In this case the counterfeit coin is either in S1 or in S2.

Freeman J. Dyson. https://en.

wikipedia.org/wiki/Freeman_Dyson

We consider 4 subsets:

S3
0 ⊂ S0, |S3

0| = 3,

A with three coins from S1,

B with one coin from S2,

C with remaining coin from S1: C = S1 \ A.

We consume the second weighing:

2nd weighing: compare w(S3
0 ∪ C) with w(A ∪ B)

subcase 1: w(S3
0 ∪ C) = w(A ∪ B). In this subcase c f ∈ S2 \ B and be-

cause w(S1) > w(S2) we know that b < a. Let {c1, c2, c3} = S2 \ B
and we consume third weighing:

3rd weighing: compare w(c1) with w(c2)

If w(c1) = w(c2) then c f = c3, if w(c1) > w(c2) then c f = c2.

subcase 2: w(S3
0 ∪ C) < w(A ∪ B). Assume c f ∈ C ⊂ S1. That would

mean that b > a because w(S1) > w(S2) but that contradicts with
w(S3

0 ∪ C) = 3a + b < w(A ∪ B) = 4a. Assume c f ∈ B ⊂ S2. That

https://en.wikipedia.org/wiki/Freeman_Dyson
https://en.wikipedia.org/wiki/Freeman_Dyson

90 math scrapbook

would mean that b < a because w(S1) > w(S2) but that contradicts
also with w(S3

0 ∪C) = 4a < w(A∪ B) = 3a + b. The only possibility
remaining is c f ∈ A. We use the third weighing analog to the pre-
vious case to find the counterfeit coin in a three-coin set using the
fact that b > a.

subcase 3: w(S3
0 ∪ C) > w(A ∪ B). In this case the counterfeit coin can

be either in B or in C. It cannot be in A according to a reasoning
analog to previous case that leads to a contradiction. Both B and
C only have one coin each so compare the coin in B with any good
coin to find the counterfeit coin in this third weighing.

This covers all the cases and we’re done.
The solution brings up questions: how would it work for 13 coins

and in general, how many weighings would be necessary for N coins.
To answer these questions we present an elegant general solution2 in- 2 Freeman J. Dyson. Note 1931-The prob-

lem of the pennies. Math. Gaz., 30:231–
234, 1946

We follow an exposition of this solution
by G. Shestopal.

vented by Freeman J. Dyson.
In the hand-tailored solution for twelve coins we kept seeing a

partition of coin sets into 3 subsets, two equally sized subsets that
were weighed against each other and one subset that didn’t partici-
pate in the current weighing. Depending on the result of the weighing
and prior information from previous weighings we could narrow the
search. Each weighing seems to contribute roughly three pieces of
"information". A sequence of n weighings would generate 3n amount
of information that should somehow map to finding the counterfeit
amongst N coins. This is not strictly accurate3 because information de- 3 The hand-tailored solution is an adap-

tive solution: later weighings are set up
according to the result of earlier weigh-
ings. Freeman J. Dyson’s general so-
lution is a non-adaptive solution if the
number of coins is divisible by three:
all the weighings are pre-determined re-
gardless of their outcome.

duced from weighings uses prior information from weighings before
and the narrowing doesn’t completely discard sets of coins but instead
uses them as scale weights with known type (ie none are counterfeits).
But this 3n observation does suggest 3n ≈ N and point to the objective
of finding a bijection between ternary codewords of length n and a set
of size N.

Lets first consider N coins with N of the form N = 1
2 (3

n − 3) for
some n ≥ 2. We will show how to find the counterfeit and its type in
n weighings4. 4 Notice that N = 12 fits this form: 12 =

1
2 (3

3 − 3), so n = 3 weighings.The set of codewords of length n from alphabet {0, 1, 2} has size
3n. We discard the three codewords with all digits equal: 0 . . . 0, 1 . . . 1
and 2 . . . 2. The set W of the remaining codewords has size 3n − 3. We
split5 W into 3n−3

2 pairs of complements: 5 The expression 3n − 3 is the subtraction
of two odd numbers, so it is even.

Definition 20.1. Two codewords a1a2 . . . an ∈ W and b1b2 . . . bn ∈ W
are complements of each other if

∀i : 1 ≤ i ≤ n : ai + bi = 2

We use the notation ac
1ac

2 . . . ac
n for the complement of a1a2 . . . an.

twelve coins 91

Definition 20.2. The function δ : W 7→ {0, 1, 2}2 finds the first two
digits of a codeword that differ6 6 The function δ is well-defined because

0 . . . 0 /∈W, 1 . . . 1 /∈W and 2 . . . 2 /∈W.

δ(a1a2 . . . an) = aiai+1 such that ∀1 ≤ j < i : aj = ai and ai ̸= ai+1

Definition 20.3. Codeword w ∈ W is called a left codeword if δ(w) ∈
{10, 21, 02} otherwise it is called a right codeword.

It is easy to see that the set of left codewords and the set of right
codewords do not overlap and that if a codeword is a left codeword
its complement is a right codeword7. A good mnemonic of left and 7 For example let’s prove that if

a1a2 . . . an is a right codeword then
ac

1ac
2 . . . ac

n is a left codeword. If aj = aj+1
then ac

j = ac
j+1 and likewise if aj ̸= aj+1

then ac
j ̸= ac

j+1. So the index of the first
two digits that differ is the same for
a codeword and its complement. The
complements of {01, 12, 20} are exactly
{21, 10, 02} so the complement of a
right codeword is a left codeword with
differing digits at the same index as the
right codeword.

right is this: 0 → 1 → 2 moves digits to the right so {01, 12, 20} cor-
responds to the right codewords and the right direction. Conversely
0 ← 1 ← 2 moves digits to the left so {10, 21, 02} corresponds to the
left codewords and the left direction.

To summarize we now have 3n−3
2 pairs of codewords from W such

that each pair has a left codeword and a right codeword that are com-
plements of each other. Let P be the set of these pairs. We have
N = 3n−3

2 coins. Let C be the set of coins. We pick an arbitrary bi-
jection µ : C 7→ P that assigns a pair to a coin, marking it with a left
and a right codeword8. 8 For example when N = 12 we could

pick µ like this:

coin left codeword right codeword
c1 211 011
c2 100 122
c3 022 200
c4 212 010
c5 101 121
c6 020 202
c7 210 012
c8 102 120
c9 021 201
c10 221 001
c11 110 112
c12 002 220

C3(2) means the subset of coins for
which the third digit in the right code-
word is 2. In this example C3(2) =
{c2, c6, c7, c11}.

We adopt the notation µ(c).right to denote the right codeword as-
signed to coin c ∈ C and µ(c).le f t the left codeword. Also µ(c).right(i)
denotes the i-th digit of the right codeword, so if µ(c).right = a1a2 . . . an

then µ(c).right(i) = ai. Analog µ(c).le f t(i) for the i-th digit of the left
codeword assigned to coin c.

We define ∀i : 1 ≤ i ≤ n and ∀d : 0 ≤ d ≤ 2 the subsets Ci(d) ⊂ C
with

Ci(d) = {c ∈ C : µ(c).right(i) = d}

It is easy to see that C = Ci(0) ∪ Ci(1) ∪ Ci(2) for each 1 ≤ i ≤ n
and that Ci(0) ∩ Ci(1) = Ci(0) ∩ Ci(2) = Ci(1) ∩ Ci(2) = ∅, so Ci(0),
Ci(1) and Ci(2) partition C.

Now we execute n weighings. For the i-th weighing we place the
coins from Ci(0) on the left pan of the scale and the coins from Ci(2) on
the right pan of the scale. We capture the n weighings in a codeword
x1x2 . . . xn ∈ W: if in the i-th weighing the left pan sinks, then xi = 0,
if the weighing is balanced then xi = 1 and if the right pan sinks then
xi = 2.

We claim that the weighing codeword x1x2 . . . xn will be either the
left or the right marker codeword of the counterfeit depending whether
the counterfeit is lighter or heavier and prove the following theorem:

Theorem 20.4. Let x1x2 . . . xn be the result of the n weighings and let c f ∈
C be the counterfeit coin. Then µ(c f).right = x1x2 . . . xn if c f is heavier and
µ(c f).le f t = x1x2 . . . xn if c f is lighter.

92 math scrapbook

Proof. Assume the counterfeit c f is lighter than the other coins (we
deal with the case of c f heavier afterwards).

There are three cases for the i-th weighing:
Case 1.(lighter) The scale is balanced, so xi = 1. This means that

c f does not participate in the i-th weighing9: c f /∈ Ci(0) and c f /∈ 9 Otherwise the scale wouldn’t be bal-
anced.Ci(2). Since Ci(0), Ci(1) and Ci(2) partition C, we have c f ∈ Ci(1). By

definition this means that µ(c f).right(i) = xi = 1 and since right and
left are complements it also means that µ(c f).le f t(i) = xi = 1.

Case 2.(lighter) The left pan sinks, so xi = 0. Here c f participates
and c f ∈ Ci(2) because it is lighter so on the right pan. By defini-
tion this means that µ(c f).right(i) = 2 and since µ(c f).le f t(i) is the
complement it also means µ(c f).le f t(i) = xi = 0.

Case 3.(lighter) The pan sinks, so xi = 2. In this case c f also par-
ticipates and c f ∈ Ci(0) because it is lighter so on the left pan. This
means µ(c f).right(i) = 0 and by complement µ(c f).le f t(i) = xi = 2.

For every i we have seen that µ(c f).le f t(i) = xi, so µ(c f).le f t =

x1x2 . . . xn.
Now assume c f is heavier. We proceed in analog fashion. There are

three cases for the i-th weighing:
Case 1.(heavier) The scale is balanced, so xi = 1. This means that c f

does not participate in the i-th weighing and we have c f ∈ Ci(1) and
µ(c f).right(i) = xi = 1.

Case 2.(heavier) The left pan sinks, so xi = 0. Here c f partici-
pates and c f ∈ Ci(0) because it is heavier so on the left pan. Then
µ(c f).right(i) = xi = 0.

Case 3.(heavier) The right pan sinks, so xi = 2. In this case c f also
participates and c f ∈ Ci(2) because it is heavier so on the right pan.
So µ(c f).right(i) = xi = 2.

We see that for every i we have µ(c f).right(i) = xi, so µ(c f).right =
x1x2 . . . xn.

Theorem 20.4 shows that the n weighings detect the counterfeit coin
and its type if there are N = 3n−3

2 coins.
If N < 3n−3

2 we have to be more careful how we mark coins with
codewords10. 10 For example assume there are only ten

coins and we arbitrarily assign the fol-
lowing codeword pairs:

coin left codeword right codeword
c1 211 011
c2 100 122
c3 022 200
c4 212 010
c5 101 121
c6 020 202
c7 210 012
c8 102 120
c9 021 201
c10 221 001

Then C2(2) = {c2, c5, c8} and C2(0) =
{c3, c6, c9, c10}. This is a problem be-
cause the two sets that will be put on
the scale in the two pans in the second
weighing have different number of coins.
We cannot deduce any information from
this weighing anymore.

Let π : W 7→ W be the function on the set of codewords W with
π(a1a2 . . . an) = b1b2 . . . bn such that ∀i : 1 ≤ i ≤ n : bi ≡ (ai + 1)
mod 2.

Lemma 20.5. The function π preserves the rightiness of codewords: if w ∈
W is a right codeword, then π(w) is also a right codeword.

Proof. Let a1a2 . . . an be a right codeword. By definition it means that
δ(a1a2 . . . an) = aiai+1 with ∀1 ≤ j < i : aj = ai and aiai+1 ∈ {01, 12, 20}.
Let π(a1a2 . . . an) = b1b2 . . . bn. This means that ∀1 ≤ j < i : bj ≡
aj + 1 ≡ ai + 1 ≡ bi mod 2. So δ(b1b2 . . . bn) = bibi+1. If aiai+1 = 01

twelve coins 93

then bibi+1 = 12, if aiai+1 = 12 then bibi+1 = 20 and if aiai+1 = 20 then
bibi+1 = 01. In all three cases b1b2 . . . bn is also a right codeword.

From the definition of π it is clear that π3(w) = w. From this and
lemma 20.5 it follows that π partitions the set of right codewords into
subsets of size three: {w, π(w), π2(w)}.

We now partition W into subsets of size six:

{w, wc, π(w), (π(w))c, π2(w), (π2(w))c}

grouping π-generated right codewords and their left complements.
The group with right codewords 00 . . . 01, 11 . . . 12 and 22 . . . 20 we set
aside and call the left-over group.

For the bijection µ : C 7→ W we group coins in groups of three. For
each group we pick a codeword group of six other than the left-over
group and assign left and right complementing codewords to each coin
in the group. If there are one or two coins left over from the grouping
into threes, then we use the left-over codeword group to assign left
and right codewords to those coins. If only one coin is left over we
assign it the right codeword 11 . . . 12 and if two are left over we assign
the right codewords 00 . . . 01 and 22 . . . 20.

With µ defined this way if N ≡ 1 mod 3 then the left-over coin
has right codeword 11 . . . 12 and will not participate in the first n− 1
weighings. If N ≡ 2 mod 3 the two left-over coins with right code-
words 00 . . . 01 and 22 . . . 20 will both participate in every of the first
n− 1 weighings. This ensures that the left-over coins don’t disrupt the
first n− 1 weighings. For a coin that is not in the left-over group it is
easy to see that if it participates in a weighing then there is another
coin in the same group (apply π twice to get to its right codeword)
that also participates on the opposite pan. Overall we have satisfied
the requirement |Ci(0)| = |Ci(2)| for all 1 ≤ i < n. The first n − 1
weighings can proceed as before.

For the last weighing we have the following cases (here the solu-
tion turns adaptive, ie the setup for the last weighing depends on the
outcome of the previous weighings):

The first two cases are for N ≡ 1 mod 3, so one left-over coin cl

with right codeword µ(cl).right = 11 . . . 12.
Case 1. The first n − 1 weighings yielded x1x2 . . . xn−1 = 11 . . . 1

(the scale was balanced in all n− 1 weighings). In this case we know
the left-over coin is the counterfeit cl = c f and we can just put it on
one pan on the scale and any other coin on the other to determine its
type.

Case 2. The first n− 1 weighings yielded x1x2 . . . xn−1 ̸= 11 . . . 1. In
this case we know the left-over coin is not the counterfeit. We can just
leave it out and put Cn(0) on the left pan and Cn(2) \ {cl} on the right

94 math scrapbook

pan of the balance scale. The resulting complete weighing codeword
will point to the counterfeit and its type.

The next cases are for for N ≡ 2 mod 3, with two left-over coins cl0

and cl2 with right codewords µ(cl0).right = 00 . . . 01 and µ(cl2).right =
22 . . . 20.

Case 3. The first n − 1 weighings yielded x1x2 . . . xn−1 = 22 . . . 2.
Both cl0 and cl2 participated in all n− 1 weighings (according to their
right codewords that start with 00 . . . 0 and 22 . . . 2 respectively). It
means that either cl0 or cl2 is the counterfeit. In the last weighing we
pit cl0 against any coin that is not cl2. If the scale is balanced then cl2 is
the counterfeit and it is heavier. If the scale tilts one way or the other
it shows cl0 as a counterfeit and its type.

Case 4. The first n − 1 weighings yielded x1x2 . . . xn−1 = 00 . . . 0.
Again both cl0 and cl2 participated in all n− 1 weighings and again it
means that either cl0 or cl2 is the counterfeit. In the last weighing we
pit cl2 against any coin that is not cl0. If the scale is balanced then cl0 is
the counterfeit and it is heavier. If the scale tilts one way or the other
it shows cl2 as a counterfeit and its type.

Case 5. The first n − 1 weighings yielded x1x2 . . . xn−1 ̸= 00 . . . 0
and x1x2 . . . xn−1 ̸= 22 . . . 2. In this case both cl0 and cl2 cannot be
counterfeits. In the last weighing we can just do Cn(0) on the left pan
and Cn(2) on the right. The resulting complete weighing codeword
will point to the counterfeit and its type.

This covers all the cases and shows that we can find the counterfeit
coin and its type in n weighings if the number of coins N ≤ 3n−3

2 .
Is this optimal or does a strategy exist that needs less than n weigh-

ings?
To answer this question we want to find a lower bound for the num-

ber of weighings given N coins.

Theorem 20.6. Given are N coins of which one is a counterfeit. If the coun-
terfeit coin and its type can be found in n weighings using a non-adaptive
strategy, then 2N ≤ 3n − 3.

Proof. There are n weighings producing a weighing codeword x1x2 . . . xn

with xi = 0 if left pan sinks in i-th weighing, xi = 1 if i-th weighing is
balanced and xi = 2 if right pan sinks. We have 3n possible codewords
from n weighings.

Assume we have a non-adaptive strategy that finds the counterfeit
coin and its type in n weighings. Since it is non-adaptive the infor-
mation of which coin participates in which weighing on which pan
is already pre-determined. Let’s capture this information in a matrix
p ∈ {0, 1, 2}n×N which we call the participation matrix:

twelve coins 95

∀1 ≤ i ≤ n, 1 ≤ j ≤ N :

pij =

0, coin j on left pan in i-th weighing

1, coin j not in i-th weighing

2, coin j on right pan in i-th weighing

The number of potential answers to the question of which coin is the
counterfeit and what is its type is 2N (N coins and two possibilities for
each coin - lighter or heavier). For notational convenience we define
the index sequence N± = {1,−1, 2,−2, . . . , N,−N}. For all 1 ≤ j ≤ N
index j means coin j is the counterfeit and it is heavier, index −j means
coin j is the counterfeit and it is lighter.

Given the participation matrix we define a matrix a ∈ {0, 1, 2}n×N± .
Cell aij tells us what result of weighing i keeps the answer that coin j
is the heavier counterfeit as still a possibility. Cell ai(−j) tells us what
result of weighing i keeps the answer that coin j is the lighter counter-
feit as still a possibility. For example if pij = 0 then coin j is on the left
pan in the i-th weighing and for coin j to be the counterfeit and heav-
ier in the i-th weighing the left pan needs to sink, the corresponding
weighing codeword component needs to be xi = 0 and aij = 0.

In other words matrix a shows for each potential answer what needs
to happen in each weighing so that the answer becomes the actual
answer:

∀1 ≤ i ≤ n, 1 ≤ j ≤ N :

aij =

0, if pij = 0

1, if pij = 1

2, if pij = 2

ai(−j) =

0, if pij = 2

1, if pij = 1

2, if pij = 0

The column j in matrix a is the weighing codeword required for
making coin j and its type (from the sign of j) the actual answer.

For the strategy (represented by the participation matrix p) to work
it needs to not rely on "luck", i.e. a given weighing codeword happens
to be a column in matrix a. All the weighing codewords that can occur
need to be columns in a exactly once.

Since the strategy is successful we know that each coin participates
in at least one weighing11, so the column vector (1, 1, . . . , 1)T does not 11 Otherwise there would be no way to

find its type even if we find the counter-
feit.

appear in p. This means that weighing codeword x1x2 . . . xn = 11 . . . 1
cannot occur and we have 3n − 1 remaining weighing codewords that
can happen.

If 2N > 3n− 1 then it must be that a weighing codeword will appear
more than once in a, so more than one potential answer could be the
actual answer and we wouldn’t know which one. So 2N ≤ 3n − 1.

We observe that in each row i of a if aij = 0 then ai(−j) = 2 and
vice versa. That means that there are ki zeros and ki twos in row i, so

96 math scrapbook

2N − 2ki ones. Also because an even number of coins participates in
each weighing we have that ki is even. So in each row we have an even
number of zeros, ones and twos. There are 3n−1 possible weighing
codewords that start with a one. That means at most 3n−1 columns in
a can have a one in the first position. Since the number of ones is even
and 3n−1 is odd we can have at most 3n−1 − 1 ones in the first row.
Similarly there are 3n−1 possible weighing codewords that start with a
zero, so k1 ≤ 3n−1 − 1. We then have:

2N = 2N − 2k1 + 2k1 ≤ 3n−1 − 1 + 2(3n−1 − 1) = 3n − 3

Explain connection to Ham-
ming codes for number of
columns smaller than 3n − 3

21
Two decks of cards

Inclusion–exclusion principle and the number of derangements
are the topics of the problem 1 in this section. 1 Probability question on page ix in Pref-

ace of M. Beck and R. Geoghegan. The
Art of Proof: Basic Training for Deeper
Mathematics. Undergraduate Texts in
Mathematics. Springer New York, 2010.
ISBN 9781441970237Problem

A deck of n different cards is shuffled and laid on the table by
your left hand, face down. An identical deck of cards, indepen-
dently shuffled, is laid at your right hand, also face down. You
start turning up cards at the same rate with both hands, first
the top card from both decks, then the next-to-top cards from
both decks, and so on. What is the probability that you will
simultaneously turn up identical cards from the two decks?

The shuffling implies equally likely outcomes so the probability is
the number of outcomes with an identical card turning up divided by
the number of total outcomes. The number of total outcomes is (n!)2

since there are n! possible shuffling outcomes of one deck (the number
of permutations of Sn).

The set of outcomes where an identical card turns up seems harder
to count. It feels easier to count its complement: the number of out-
comes when no identical card comes up. There are n! ways in which
the first deck is shuffled. For a given permutation π ∈ Sn of the first
deck we need to count all the permutations ρ ∈ Sn of the second deck
for which ∀i : 1 ≤ i ≤ n : ρ(i) ̸= π(i). Let Aπ = {ρ ∈ Sn : ∀i : 1 ≤ i ≤
n : ρ(i) ̸= π(i)}.

Let Dn = {τ ∈ Sn : ∀i : 1 ≤ i ≤ n : τ(i) ̸= i}. A permutations from
Dn is called a derangement. We introduce the notation !n = |Dn| for
the number of derangements.

98 math scrapbook

Lemma 21.1.
|Aπ | = |Dn|

Proof. We need to present a bijection f : Dn → Aπ . We define f (τ) =
π ◦ τ. First we verify that f is well-defined, i.e. f (τ) ∈ Aπ .

∀i : 1 ≤ i ≤ n :

f (τ)(i) = (π ◦ τ)(i)

= π(τ(i)) ̸= π(i)

because τ(i) ̸= i

Next we show that f is injective: f (τ1) = f (τ2) implies π ◦ τ1 = π ◦ τ2.
Sn is a group, so τ1 = τ2. Also f is surjective because: ∀ρ ∈ Aπ

we have π−1 ◦ ρ ∈ Dn because ρ(i) ̸= π(i) implies (π−1 ◦ ρ)(i) ̸= i.
f (π−1 ◦ ρ) = ρ.

From lemma 21.1 we now know that the number of outcomes when
no identical card comes up is !n · n! and the probability requested in
the problem is

P = 1− !n · n!
n!2

= 1− !n
n!

What remains is to compute !n. Let us look again at the set of
derangements: Dn = {τ ∈ Sn : ∀i : 1 ≤ i ≤ n : τ(i) ̸= i}. It sometimes
helps to consider the complement of a set when we have to compute
its cardinality. To more precisely define the complement of Dn we will
define the following subsets of Sn: Fn(k) = {τ ∈ Sn : τ(k) = k}. We
then have:

Dn = Sn \ (
n⋃

k=1

Fn(k))

For any given k ∈ {1, 2, . . . , n} we have |Fn(k)| = (n− 1)! (see foot-
note2 why), so 2 One position is fixed and the rest be-

have like a permutation in Sn−1.

|(
n⋃

k=1

Fn(k))| = n(n− 1)! = n!

But this can’t be right. It would mean that |Dn| = 0 and Dn = ∅.
But cleary Dn is not empty, for example the permutation:

ρ(i) =

i + 1 i < n

1 i = n

is a member of Dn. The problem here is that the Fn(k) are not disjoint,
so calculating the size of their union needs to be done more carefully.
It turns out that this is a perfect use case of the inclusion-exclusion
principle.

two decks of cards 99

The inclusion-exclusion principle provides a method of counting
the size of the union of subsets that are not necessarily disjoint.

We illustrate the method on a simple example of three sets A, B, C as
in Figure 21.1. We would like to compute |A ∪ B ∪ C|. The expression
|A|+ |B|+ |C| would count the elements from (A ∩ B) \ (A ∩ B ∩ C),
(A ∩ C) \ (A ∩ B ∩ C) and (B ∩ C) \ (A ∩ B ∩ C) twice and elements
from A ∩ B ∩ C three times. So |A ∪ B ∪ C| < |A|+ |B|+ |C|. To com-
pensate we subtract the pairwise intersection sizes and our expression
becomes |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|. This is almost
right except for A ∩ B ∩ C which we lost in the adjustment (it was
counted three times and then subtracted three times). We add it back
and get

|A∪ B∪C| = |A|+ |B|+ |C| − |A∩ B| − |A∩C| − |B∩C|+ |A∩ B∩C|

A

B

C

Figure 21.1: Union of three not necessar-
ily disjoint sets.

In general, if we want to count | ∪n
i=1 Ai| we start with ∑n

i=1 |Ai|
which includes pairwise intersections Ai ∩ Aj twice, so we exclude
with −(∑n

1≤i<j≤n |Ai ∩ Aj|). But this excludes the triple intersections
so we include those with ∑n

1≤i<j<k≤n |Ai ∩ Aj ∩ Ak|. This overcounts
quadruple intersections which we exclude etc. We stop with the exclu-
sion or inclusion of the intersection of all Ai.

Theorem 21.2. Inclusion-exclusion principle.
Given n sets Aj, 1 ≤ j ≤ n

|
n⋃

j=1

Aj| =
n

∑
k=1

(−1)k+1(∑
J⊆Nn , |J|=k

|
⋂
j∈J

Aj|)

Proof. We are going to prove the theorem by tracing the contributions
of one element a ∈ ⋃n

j=1 Aj to the left-hand side and right-hand side
of the equation. On the left it will be 1 since this is the union of sets
and not multisets. For the right-hand side, we observe that there is a
non-empty index set I ⊆ {1, 2, . . . , n} such that ∀i ∈ I : a ∈ Ai. The
element a will contribute ±1 from all the set intersections in which it
appears, so all the terms in the sum where index set J satisfies J ⊆ I
(since these are intersections, a won’t appear in any of the other terms).
The hope is that the sum of all these ±1 will be 1.

Let m = |I|. Then any index set J with size greater than m cannot
be a subset of I, so the running index k of the sum only needs to go to
m. For each k there are (m

k) index subsets J of size k from I. In each a
weighs in with 1, so the contributions of a add up to:

m

∑
k=1

(−1)k+1
(

m
k

)
We add and subtract (m

0) to this sum and get

100 math scrapbook

m

∑
k=1

(−1)k+1
(

m
k

)
=

(
m
0

)
−
(

m
0

)
+

m

∑
k=1

(−1)k+1
(

m
k

)
=

(
m
0

)
−

m

∑
k=0

(−1)k+1
(

m
k

)
=

(
m
0

)
+

m

∑
k=0

(−1)k
(

m
k

)
=

(
m
0

)
+

m

∑
k=0

1m−k(−1)k
(

m
k

)
=

(
m
0

)
+ (1− 1)m

=

(
m
0

)
= 1

On both sides of the equation in the theorem an arbitrary element
a of the union of the sets contributes 1. This proves the inclusion-
exclusion principle.

Let us return to computing derangements. We now know how to
compute |(⋃n

k=1 Fn(k))| by using the inclusion-exclusion principle:

|(
n⋃

k=1

Fn(k))| =
n

∑
k=1

(−1)k+1(∑
J⊆Nn , |J|=k

|
⋂
j∈J

Fn(j)|)

For a given index set J ⊆ Nn, |J| = k the intersection contains all
the permutations that are fixed in the positions j ∈ J, so the size of this
intersection is (n− k)!. There are (n

k) such index sets J of size k, so our
expression becomes:

|(
n⋃

k=1

Fn(k))| =
n

∑
k=1

(−1)k+1
(

n
k

)
(n− k)!

We then have

!n = n!−
n

∑
k=1

(−1)k+1
(

n
k

)
(n− k)!

= n! +
n

∑
k=1

(−1)k
(

n
k

)
(n− k)!

=
n

∑
k=0

(−1)k
(

n
k

)
(n− k)!

The probability of turning up identical cards from the two decks is

two decks of cards 101

1− !n
n!

= 1−
n

∑
k=0

(−1)k
(

n
k

)
(n− k)!

n!

= 1−
n

∑
k=0

(−1)k n!
k!(n− k)!

(n− k)!
n!

= 1−
n

∑
k=0

(−1)k

k!

This probability converges fairly quickly to approximatively 0.7 so
you have a 0.7 chance of turning up identical cards from the two decks.

22
While a

Loop invariants is the topic of the problem 1 in this note. 1 Problem 4 on page 9 from A. Engel.
Problem-Solving Strategies. Problem
Books in Mathematics. Springer New
York, 2013. ISBN 9781475789546. URL
https://books.google.com/books?id=

aUofswEACAAJProblem

We start with the state (a, b) where a, b are positive integers. To
this initial state we apply the following algorithm:

while a > 0 :
i f a < b :

(a , b) = (2 a , b − a)
e lse :

(a , b) = (a − b , 2b)

For which starting positions does the algorithm stop? In how
many steps does it stop, if it stops? What can you tell about
periods and tails?

We start with a > 0 and b > 0. We adopt the following notation: ai,
bi are the values after i ∈ N≥0 times through the loop. Before the first
time through the loop a0 = a, b0 = b. Let n = a + b.

Let’s collect some invariants. We will prove all of them by induction
on i ∈N≥0.

Invariant 22.1.

∀i ≥ 0 : ai + bi = n

Proof. Base case a0 + b0 = a + b = n holds by definition of n and
(a0, b0). Assume ai + bi = n. For ai+1 + bi+1 we have two cases:

Case ai < bi: Here we have ai+1 = 2ai and bi+1 = bi − ai. So

ai+1 + bi+1 = 2ai + bi − ai = ai + bi = n

https://books.google.com/books?id=aUofswEACAAJ
https://books.google.com/books?id=aUofswEACAAJ

while a 103

Case ai ≥ bi: In this case we have ai+1 = ai − bi and bi+1 = 2bi. It
follows

ai+1 + bi+1 = ai − bi + 2bi = ai + bi = n

Invariant 22.2.
∀i ≥ 0 : bi > 0

Proof. This follows almost immediately from definitions 2. 2 Base case b0 = b > 0 holds by defini-
tion of b. Assume bi > 0. Again we have
two cases. If ai < bi then bi+1 = bi − ai >
0. If ai ≥ bi then bi+1 = 2bi > 0.

Invariant 22.3.
∀i ≥ 0 : ai ≥ 0

Proof. This also follows from definitions 3. 3 Base case a0 = a > 0 holds by defini-
tion of a. Assume ai ≥ 0. Again we have
two cases. If ai < bi then ai+1 = 2ai ≥ 0.
If ai ≥ bi then ai+1 = ai − bi ≥ 0.

Invariant 22.4.
∀i ≥ 0 : ai ≡ 2ia mod n

Proof. Base case a0 = a = 20a trivially holds. Assume ai ≡ 2ia mod n.
For ai+1 we have two cases:

Case ai < bi: Here we have ai+1 = 2ai. So

ai+1 = 2ai

≡ 2 · 2ia mod n

≡ 2i+1a mod n

Case ai ≥ bi: In this case we have ai+1 = ai − bi. It follows

ai+1 = ai − bi

≡ ai + n− bi mod n

≡ ai + ai + bi − bi mod n

≡ 2ai mod n

≡ 2 · 2ia mod n

≡ 2i+1a mod n

We will use these 4 invariants (ai ≥ 0, bi > 0, ai + bi = n and
ai ≡ 2ia mod n) to determine for which initial values a and b the loop
terminates. To do so we consider a

n . Because 0 < a < n we know that
a
n ∈ (0, 1). We look at the expansion of a

n in base 2.

104 math scrapbook

Theorem 22.1. If the expansion of a
n is finite with k digits di ∈ {0, 1}

a
n
=

k

∑
i=1

di2−i

then ak = 0 and the loop terminates after k steps.

Proof. From

a
n
=

k

∑
i=1

di2−i

we get by multiplying both sides with 2kn:

2ka =
k

∑
i=1

ndi2k−i ≡ 0 mod n

Together with invariant 22.4 we get

ak ≡ 2ka ≡ 0 mod n

and because ak ≥ 0, bk > 0, ak + bk = n we know that 0 ≤ ak < n, so
it must be that ak = 0 and the loop terminates after at most k steps. To
show that the loop terminates after exactly k steps, we need to show
that aj > 0 for 0 ≤ j < k. We will do this by finding a contradiction.
Assume there exists a j < k such that aj = 0. Then it also holds that
2ja ≡ 0 mod n.

From

a
n
=

k

∑
i=1

di2−i

we get by multiplying both sides with 2jn:

2ja =
k

∑
i=1

ndi2j−i =
j

∑
i=1

ndi2j−i +
k

∑
i=j+1

ndi2j−i ≡ 0 mod n

2ja ≡ 0 mod n, so 2ja = nq for some q ∈ Z. Then

q =
j

∑
i=1

di2j−i +
k

∑
i=j+1

di2j−i

We have q ∈ Z, ∑
j
i=1 di2j−i ∈ Z, but ∑k

i=j+1 di2j−i /∈ Z, because
di ∈ {0, 1}. This is a contradiction.

We arrived at a neat result: if the binary expansion of a
a+b is finite

with k digits, then the loop terminates after k steps.

while a 105

What can we say if the expansion is not finite but instead has a
repeating pattern with a prefix and a period (the only other option 4) 4 That is because a

a+b ∈ Q. See below for
why.? For starters, we can use a contradiction similar to the earlier one to

prove that the loop does not terminate. Consider the infinite binary
expansion:

a
n
=

∞

∑
i=1

di2−i

Assume there is a k for which ak = 0. Then by multiplying the
expansion with 2kn we get:

2ka =
k

∑
i=1

ndi2k−i +
∞

∑
i=k+1

ndi2k−i ≡ 0 mod n

So for some q ∈ Z such that 2ka = nq we have

q =
k

∑
i=1

di2k−i +
∞

∑
i=k+1

di2k−i

The left side and the first sum on the right both belong to Z but
the second sum does not, which is a contradiction. This means, that
∀k : ak > 0 and the loop does not terminate.

At this point we will do a small digression and prove some theorems
about decimal expansion.

Theorem 22.2. Given an integer p > 1, the series

∞

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p− 1} converges to a value x ∈ [0, 1].

Proof.
n

∑
i=1

di

pi ≤
n

∑
i=1

p− 1
pi −−−→

n→∞
1

so the series is bounded and will converge.

Theorem 22.3. For every x ∈ [0, 1] there exists a decimal expansion with
base p > 1 such that

x =
∞

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p− 1}.

Proof. We divide the interval [0, 1] into p intervals [i
p , i+1

p] with 0 ≤ i <

p. Since [0, 1] =
⋃p−1

i=0 [
i
p , i+1

p] we know there exists at least one index i

with x ∈ [i
p , i+1

p]. We set d1 = i and subdivide [i
p , i+1

p] into p segments

[i
p , i+1

p] =
⋃p−1

j=0 [
d1
p + j

p2 , d1
p + j+1

p2]. x is in one of these subintervals and

106 math scrapbook

we set d2 to be the index of that subinterval and continue in this man-
ner recursively defining all di. Because of the nested interval property
with monotone decreasing length this converges to x.

Another way to prove it is like this:
The case where x = 0 is trivial (just set all di = 0).
For x > 0 we have:
The set N1 = {k ∈ N0 : k

p < x} is a set of non-negative integers
strictly bounded above by p, so it has a largest element and we set
d1 = max(N1). Then x ≤ d1+1

p (otherwise d1 + 1 ∈ N1 and d1 wouldn’t
be the largest element of N1). We therefore have

d1

p
< x ≤ d1 + 1

p

We continue and look at N2 = {k ∈ N0 : d1
p + k

p2 < x}. Again the
set N2 is strictly bounded above by p and we set d2 = max(N2). Again
we have:

d1

p
+

d2

p2 < x ≤ d1

p
+

d2 + 1
p2

Having defined d1, d2, . . . dn−1 we can recursively define dn = max(Nn)

with

Nn = {k ∈N0 :
n−1

∑
i=1

di

pi +
k
pn < x}

Again p /∈ Nn, so the definition is valid and the following inequali-
ties hold:

n

∑
i=1

di

pi < x ≤
n−1

∑
i=1

di

pi +
dn + 1

pn

We define un = ∑n
i=1

di
pi , vn = ∑n−1

i=1
di
pi +

dn+1
pn and wn = dn+1+1

pn+1 . un

is monotone increasing and bounded above, so it converges. For vn we
have

vn ≥ vn+1

⇔
n−1

∑
i=1

di

pi +
dn + 1

pn ≥
n

∑
i=1

di

pi +
dn+1 + 1

pn+1

⇔ dn + 1
pn ≥ dn

pn +
dn+1 + 1

pn+1

⇔ 1
pn ≥

dn+1 + 1
pn+1

⇔ p ≥ dn+1 + 1

while a 107

which holds by definition of dn+1. So vn is monotone decreasing
and bounded below, therefore it converges too. wn converges to zero
and vn = un−1 + wn therefore

limn→∞un = limn→∞vn = x

Theorem 22.4. Given is base p > 1 and

x =
n

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p − 1} and dn ̸= 0. Then there are two base p
expansions of x.

Proof. The first expansion is x = ∑∞
i=1

di
pi with di = 0 for i > n. For the

second expansion we define the following series:

y =
n−1

∑
i=1

di

pi +
dn − 1

pn +
∞

∑
i=n+1

p− 1
pi

and prove that y = x. Then the two expansions are 0.d1d2 . . . dn00000 . . .
and 0.d1d2 . . . (dn − 1)(p− 1)(p− 1)(p− 1) . . .

To prove that y = x we look at

∞

∑
i=n+1

p− 1
pi =

p− 1
pn

∞

∑
i=1

1
pi

=
p− 1

pn (
∞

∑
i=0

1
pi − 1)

=
p− 1

pn (
p

p− 1
− 1)

=
p− 1

pn
1

p− 1

=
1
pn

So y becomes

y = x− 1
pn +

1
pn = x

Theorem 22.5. If we disallow series with infinitely repeated (p− 1) tail, any
x ∈ [0, 1] has a unique decimal expansion in base p.

Proof. Assume two decimal expansions where both agree until index
k− 1 and index k is the first index where they differ.

108 math scrapbook

x =
k−1

∑
i=1

di

pi +
ek

pk +
∞

∑
i=k+1

ei

pi

y =
k−1

∑
i=1

di

pi +
fk

pk +
∞

∑
i=k+1

fi

pi

Without loss of generality assume ek < fk.
We have

y− x =
k−1

∑
i=1

di

pi +
fk

pk +
∞

∑
i=k+1

fi

pi −
k−1

∑
i=1

di

pi −
ek

pk −
∞

∑
i=k+1

ei

pi

=
fk − ek

pk +
∞

∑
i=k+1

fi

pi −
∞

∑
i=k+1

ei

pi

=
fk − ek

pk +
1
pk (

∞

∑
i=1

fk+i

pi −
∞

∑
i=1

ek+i

pi)

We denote u = ∑∞
i=1

fk+i
pi and v = ∑∞

i=1
fk+i
pi . Since we disallowed

repeated (p − 1) tail, we know that 0 ≤ u < 1 and 0 ≤ v < 1, so
−1 < u− v < 1. It follows that

0 ≤ fk − ek − 1
pk < y− x <

fk − ek + 1
pk

and x ̸= y.

Theorem 22.6. x ∈ [0, 1] ∩Q if and only if its decimal expansion in base
p > 1 is either finite or has a prefix (of length zero or more) and an infinitely
repeating non-zero length pattern tail.

Proof.
(⇒):
x ∈ [0, 1] ∩Q, so there exist m, n ∈ N with m < n and x = m

n . We
basically do the long division and present an expansion that will have
a repeating tail (if it isn’t finite). Let k ∈N be the smallest integer such
that mpk ≥ n and we do division:

mpk = nq + r

with 0 ≤ r < n. Because k is the smallest integer with mpk ≥ n we
have np > mpk (otherwise k− 1 would be a smaller integer satisfying
the same). That means np > nq + r and thus p > np−r

n > q. This gives
us k− 1 zeros and the first non-zero digit in the expansion, namely q:

while a 109

m
n

=
1
pk

mpk

n

=
1
pk

nq + r
n

=
q
pk +

r
n

We repeat this process with r
n . There are only n possible remainders,

so if it doesn’t end with a remainder of zero it must eventually get
a previously seen remainder and so the expansion will repeat itself.
This creates an expansion with an infinitely repeating non-zero length
pattern tail. Since it isn’t finite, we can disallow repeating (p − 1)
and from the expansion uniqueness theorem we have proved the (⇒)

direction.
(⇐):
This direction is easy. If it is a finite sum, then it is rational since

all the parts are rational. If it is infinite repeating we can eliminate the
non-repeating prefix since it is finite and rational and shift the rest. So
we can concentrate on a repeating series with a period of length k− 1:

x =
∞

∑
i=0

(
1

pki

k−1

∑
j=1

dj

pj)

= (
k−1

∑
j=1

dj

pj)
∞

∑
i=0

1
pki

= (
k−1

∑
j=1

dj

pj)(1 +
∞

∑
i=1

1
pki)

= (
k−1

∑
j=1

dj

pj)(1 +
∞

∑
i=1

(
1
pk)

i)

= (
k−1

∑
j=1

dj

pj)(1 +
pk

pk − 1
)

which is a rational expression.

We return to our problem. We now know the expansion of a
a+b is

repeating a period if it doesn’t terminate. We will show that the loop
also repeats a period of the same length.

Theorem 22.7. If a
n has an expansion in base p which repeats a period of k

digits infinitely, then

apk ≡ a mod n

110 math scrapbook

Proof. We have a
n = 0.d1d2d3 . . . dk which means

a
n
= 0.d1d2d3 . . . dk

=
k

∑
i=1

di

pi +
1
pk (

k

∑
i=1

di

pi +
1
pk (

k

∑
i=1

di

pi + . . .

=
k

∑
i=1

di

pi +
1
pk

a
n

We multiply both sides by npk and get

apk =
k

∑
i=1

ndi pk−i + a

which proves the theorem.

Theorem 22.8. If a
n has an expansion in base p which has a prefix and then

repeats a period of k digits infinitely, then

apk ≡ a mod n

Proof. We have a
n = 0.e1e2e3 . . . eld1d2d3 . . . dk which means

a
n
= 0.e1e2e3 . . . eld1d2d3 . . . dk

=
l

∑
i=1

ei

pi +
1
pl (0.d1d2d3 . . . dk)

This means

apl −∑l
i=1 pl−iein
n

= 0.d1d2d3 . . . dk

We can then apply the previous theorem to a new a′ := apl −
∑l

i=1 pl−iein and see that

a′pk ≡ a′ mod n

But a′ ≡ apl mod n, so

apk+l ≡ apl mod n

or apk ≡ a mod n.

We combine this last result with the invariant 22.4 to see that ai+k =

ai and the loop repeats values with period k.

23
Divisible by three

Loop invariants and a constraint relaxation are used to solve this
problem.

Problem

Show that an integer is divisible by three iff the sum of its digits
in decimal representation is divisible by three.

The following proof is a delightful example of unconventional think-
ing1. 1 Unfortunately I don’t know the ori-

gin of this proof and I don’t remember
where I first saw it.

We have to work with the digits in decimal representation of some
integer n. Let’s denote with s(n) the sum of those digits. We will prove
something stronger than the problem:

s(n) = n− 9k, for some k ∈ Z

The delightful twist that we are going to use is a relaxation of deci-
mal representation: we will allow digits bigger than nine. We will then
heal the representation back to decimal digits less than ten in a loop
while maintaining s(n) = n− 9k as a loop invariant.

We start with a representation with just one digit, namely n itself:

n = ∑
i=0

di10i, with d0 = n and ∀i > 0 : di = 0

This is not yet a valid decimal representation if d0 > 9, but the loop
invariant does hold: s(n) = ∑i=0 di = n = n − 9 · 0. In a loop we
now keep subtracting ten from d0 and adding a carry-over one to d1

until d0 ≤ 9. Each time through the loop d1 increases by one and d0

decreases by ten, so s(n) = ∑i=0 di decreases by nine:

112 math scrapbook

d1 ← d1 + 1

d0 ← d0 − 10

s(n)← s(n)− 9

This means the loop invariant s(n) = n− 9k is maintained during
the healing of d0. Eventually d0 ≤ 9. We then look at d1 and heal it
similarly, carrying over to d2 and subtracting ten from it. Again the
loop invariant holds. We repeat this for all digits until all are healed.
The healing has to finish because n is a finite integer with a finite deci-
mal representation. In the end we have a valid decimal representation
and the loop invariant still holds which proves our problem.

112

1 102

2 92

3 82

4 72

10 12

11 2

1 1 2

<latexit sha1_base64="my6LlFaRtgmOdr/6EIZVp53GrnU=">AAACB3icbVDLSgMxFM3UV62vUZeCBItQF5aZUrQuhIIblxXsA9qhZDKZNjSTDElGKEN3bvwVNy4UcesvuPNvTNtZaOuB5B7OuZfkHj9mVGnH+bZyK6tr6xv5zcLW9s7unr1/0FIikZg0sWBCdnykCKOcNDXVjHRiSVDkM9L2RzdTv/1ApKKC3+txTLwIDTgNKUbaSH37WJVct3IGr6Ep2X0OHdjDgdDwqm8XnbIzA1wmbkaKIEOjb3/1AoGTiHCNGVKq6zqx9lIkNcWMTAq9RJEY4REakK6hHEVEeelsjwk8NUoAQyHN4RrO1N8TKYqUGke+6YyQHqpFbyr+53UTHda8lPI40YTj+UNhwqAWcBoKDKgkWLOxIQhLav4K8RBJhLWJrmBCcBdXXiatStm9KFfvqsV6LYsjD47ACSgBF1yCOrgFDdAEGDyCZ/AK3qwn68V6tz7mrTkrmzkEf2B9/gAu9JRs</latexit>

s(112) = 112 = 112� 0 · 9

<latexit sha1_base64="TLkuQqGaECAQCH2eSzv2gxoO/8w=">AAACB3icbVDLSgMxFM3UV62vUZeCBItQF5ZJLVoXQsGNywr2Ae1QMplMG5qZDElGKEN3bvwVNy4UcesvuPNvzLRdaPXAvRzOuZfkHi/mTGnH+bJyS8srq2v59cLG5tb2jr2711IikYQ2ieBCdjysKGcRbWqmOe3EkuLQ47Ttja4zv31PpWIiutPjmLohHkQsYARrI/XtQ1VCqHICryByzrKOKvAUItgjvtDwsm8XnbIzBfxL0JwUwRyNvv3Z8wVJQhppwrFSXeTE2k2x1IxwOin0EkVjTEZ4QLuGRjikyk2nd0zgsVF8GAhpKtJwqv7cSHGo1Dj0zGSI9VAtepn4n9dNdFBzUxbFiaYRmT0UJBxqAbNQoM8kJZqPDcFEMvNXSIZYYqJNdAUTAlo8+S9pVcrovFy9rRbrtXkceXAAjkAJIHAB6uAGNEATEPAAnsALeLUerWfrzXqfjeas+c4++AXr4xswf5Rt</latexit>

s(112) = 103 = 112� 1 · 9

<latexit sha1_base64="bkJHIt46c9tKkyFPd5arzJxrT4E=">AAACBnicbZDLSgMxFIYz9VbrbdSlCMEi1IVlphRtF0LBjcsK9gLtUDKZTBuaSYYkI5ShKze+ihsXirj1Gdz5NqbtLLR6IOHj/88hOb8fM6q043xZuZXVtfWN/GZha3tnd8/eP2grkUhMWlgwIbs+UoRRTlqaaka6sSQo8hnp+OPrmd+5J1JRwe/0JCZehIachhQjbaSBfaxKrls5g1ewXjWXYXgOK7CPA6FhfWAXnbIzL/gX3AyKIKvmwP7sBwInEeEaM6RUz3Vi7aVIaooZmRb6iSIxwmM0JD2DHEVEeel8jSk8NUoAQyHN4RrO1Z8TKYqUmkS+6YyQHqllbyb+5/USHda8lPI40YTjxUNhwqAWcJYJDKgkWLOJAYQlNX+FeIQkwtokVzAhuMsr/4V2pexelKu31WKjlsWRB0fgBJSACy5BA9yAJmgBDB7AE3gBr9aj9Wy9We+L1pyVzRyCX2V9fAPMuZQ9</latexit>

s(112) = 94 = 112� 2 · 9

<latexit sha1_base64="jRrnljylODy7RBR6Toh3pIc5TIk=">AAACBnicbZDLSgMxFIYz9VbrbdSlCMEi1IVlplatC6HgxmUFe4F2KJlMpg3NJEOSEUrpyo2v4saFIm59Bne+jWk7C209kPDx/+eQnN+PGVXacb6tzNLyyupadj23sbm1vWPv7jWUSCQmdSyYkC0fKcIoJ3VNNSOtWBIU+Yw0/cHNxG8+EKmo4Pd6GBMvQj1OQ4qRNlLXPlQF1y2dwGtYOTeXYXgKz2AHB0LDq66dd4rOtOAiuCnkQVq1rv3VCQROIsI1ZkiptuvE2hshqSlmZJzrJIrECA9Qj7QNchQR5Y2ma4zhsVECGAppDtdwqv6eGKFIqWHkm84I6b6a9ybif1470WHFG1EeJ5pwPHsoTBjUAk4ygQGVBGs2NICwpOavEPeRRFib5HImBHd+5UVolIruRbF8V85XK2kcWXAAjkABuOASVMEtqIE6wOARPINX8GY9WS/Wu/Uxa81Y6cw++FPW5w/ORJQ+</latexit>

s(112) = 85 = 112� 3 · 9

<latexit sha1_base64="1AHNw3LGsmOuKpY+Z2cFycIThts=">AAACBnicbZDLSgMxFIYz9VbrbdSlCMEi1IVlppS2LoSCG5cV7AXaoWQyaRuaSYYkI5ShKze+ihsXirj1Gdz5NqbtLLT1QMLH/59Dcn4/YlRpx/m2MmvrG5tb2e3czu7e/oF9eNRSIpaYNLFgQnZ8pAijnDQ11Yx0IklQ6DPS9sc3M7/9QKSigt/rSUS8EA05HVCMtJH69qkquG7pAl7DasVchuElLMMeDoSGV3077xSdecFVcFPIg7QaffurFwgch4RrzJBSXdeJtJcgqSlmZJrrxYpECI/RkHQNchQS5SXzNabw3CgBHAhpDtdwrv6eSFCo1CT0TWeI9EgtezPxP68b60HNSyiPYk04Xjw0iBnUAs4ygQGVBGs2MYCwpOavEI+QRFib5HImBHd55VVolYpupVi+K+frtTSOLDgBZ6AAXFAFdXALGqAJMHgEz+AVvFlP1ov1bn0sWjNWOnMM/pT1+QPPz5Q/</latexit>

s(112) = 76 = 112� 4 · 9

<latexit sha1_base64="yyqYf1z0oOxGwDw9V1TfOGEsTcg=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMEi1IVlMhStC6HgxmUFe4F2KJk004ZmJkOSEcrQnRtfxY0LRdz6Cu58G9N2Ftp6IOHj/88hOb8fc6a043xbuZXVtfWN/GZha3tnd8/eP2gqkUhCG0RwIds+VpSziDY005y2Y0lx6HPa8kc3U7/1QKViIrrX45h6IR5ELGAEayP17GNVQsg9g9fQdc1lGJ5D5MAu6QsNr3p20Sk7s4LLgDIogqzqPfur2xckCWmkCcdKdZATay/FUjPC6aTQTRSNMRnhAe0YjHBIlZfO9pjAU6P0YSCkOZGGM/X3RIpDpcahbzpDrIdq0ZuK/3mdRAdVL2VRnGgakflDQcKhFnAaCuwzSYnmYwOYSGb+CskQS0y0ia5gQkCLKy9D0y2ji3LlrlKsVbM48uAInIASQOAS1MAtqIMGIOARPINX8GY9WS/Wu/Uxb81Z2cwh+FPW5w8wUpRt</latexit>

s(112) = 22 = 112� 10 · 9

<latexit sha1_base64="cipV2jCga8dDmxtqGV5+W8twLm4=">AAACB3icbVDLSgMxFM3UV62vUZeCBItQF5ZJLVoXQsGNywr2Ae1QMplMG5qZDElGKEN3bvwVNy4UcesvuPNvzLRdaPVALodz7uXmHi/mTGnH+bJyS8srq2v59cLG5tb2jr2711IikYQ2ieBCdjysKGcRbWqmOe3EkuLQ47Ttja4zv31PpWIiutPjmLohHkQsYARrI/XtQ1VCqHICryA6ywqqwFNTYY/4QsPLvl10ys4U8C9Bc1IEczT69mfPFyQJaaQJx0p1kRNrN8VSM8LppNBLFI0xGeEB7Roa4ZAqN53eMYHHRvFhIKR5kYZT9edEikOlxqFnOkOsh2rRy8T/vG6ig5qbsihONI3IbFGQcKgFzEKBPpOUaD42BBPJzF8hGWKJiTbRFUwIaPHkv6RVKaPzcvW2WqzX5nHkwQE4AiWAwAWogxvQAE1AwAN4Ai/g1Xq0nq03633WmrPmM/vgF6yPbzHdlG4=</latexit>

s(112) = 13 = 112� 11 · 9

<latexit sha1_base64="9ymDcfjsQWcJlrIZzdVbrtHF3CI=">AAACBnicbVDLSgMxFM3UV62vUZciBItQF5aZUrQuhIIblxXsA9qhZDKZNjSTDElGKENXbvwVNy4Uces3uPNvTNtZaOuBGw7n3MvNPX7MqNKO823lVlbX1jfym4Wt7Z3dPXv/oKVEIjFpYsGE7PhIEUY5aWqqGenEkqDIZ6Ttj26mfvuBSEUFv9fjmHgRGnAaUoy0kfr2sSq5buUMXsOqKUPhOTRPDwdCw6u+XXTKzgxwmbgZKYIMjb791QsETiLCNWZIqa7rxNpLkdQUMzIp9BJFYoRHaEC6hnIUEeWlszMm8NQoAQyFNMU1nKm/J1IUKTWOfNMZIT1Ui95U/M/rJjqseSnlcaIJx/NFYcKgFnCaCQyoJFizsSEIS2r+CvEQSYS1Sa5gQnAXT14mrUrZvShX76rFei2LIw+OwAkoARdcgjq4BQ3QBBg8gmfwCt6sJ+vFerc+5q05K5s5BH9gff4Av8mUNQ==</latexit>

s(112) = 4 = 112� 12 · 9

<latexit sha1_base64="QBIlagHt1ucGFsJSBo94igSl2qg=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0mkaI8FLx4r2A9oY9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Mj9/iko+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244vc397hNVmsXywcwSGgg8lixiBJtc8r1Hb+hWvZq3AFonfkGqUKA1dL8Go5ikgkpDONa673uJCTKsDCOcziuDVNMEkyke076lEguqg2xx6xxdWGWEoljZkgYt1N8TGRZaz0RoOwU2E73q5eJ/Xj81USPImExSQyVZLopSjkyM8sfRiClKDJ9Zgoli9lZEJlhhYmw8FRuCv/ryOulc1fzrWv2+Xm02ijjKcAbncAk+3EAT7qAFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QMKoo2Q</latexit>

100
<latexit sha1_base64="fkVqBml1BYiYDka/G6BtYrloQTk=">AAAB63icbVBNS8NAEJ3Ur1q/oh69LBbBU0mkaI8FLx4r2A9oY9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Mj9/iko+NUEdomMY9VL8SaciZp2zDDaS9RFIuQ0244vc397hNVmsXywcwSGgg8lixiBJtc8r1Hf+hWvZq3AFonfkGqUKA1dL8Go5ikgkpDONa673uJCTKsDCOcziuDVNMEkyke076lEguqg2xx6xxdWGWEoljZkgYt1N8TGRZaz0RoOwU2E73q5eJ/Xj81USPImExSQyVZLopSjkyM8sfRiClKDJ9Zgoli9lZEJlhhYmw8FRuCv/ryOulc1fzrWv2+Xm02ijjKcAbncAk+3EAT7qAFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QMMJo2R</latexit>

101
<latexit sha1_base64="G3QjZMvFXe3yCWqug8Jaux/hnQw=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9ktpfZY8OKxgv2Adi3ZNNuGJtklyQpl6V/w4kERr/4hb/4bs+0etPXBwOO9GWbmBTFn2rjut1PY2t7Z3Svulw4Oj45PyqdnXR0litAOiXik+gHWlDNJO4YZTvuxolgEnPaC2W3m956o0iySD2YeU1/giWQhI9hkkuc+1kblilt1l0CbxMtJBXK0R+Wv4TgiiaDSEI61HnhubPwUK8MIp4vSMNE0xmSGJ3RgqcSCaj9d3rpAV1YZozBStqRBS/X3RIqF1nMR2E6BzVSve5n4nzdITNj0UybjxFBJVovChCMToexxNGaKEsPnlmCimL0VkSlWmBgbT8mG4K2/vEm6tarXqNbv65VWM4+jCBdwCdfgwQ204A7a0AECU3iGV3hzhPPivDsfq9aCk8+cwx84nz8Nqo2S</latexit>

102 Figure 23.1: Example with n = 112. In
each row the boxes represent the digits
in the decimal representation (least sig-
nificant on the right). In the first row
the representation has only one digit, the
number itself. Going down, each row is
one step in the healing of the represen-
tation while maintaining the loop invari-
ant s(112) = 112− k · 9.

Obviously one could just observe that 10 ≡ 1 mod 3, so also 10k ≡
1 mod 3 and the divisibility rule follows immediately.

n = ∑
i=0

di10i ≡ ∑
i=0

di mod 3

24
Dutch National Flag

Problem ‘Dutch National Flag’ in Programming, The Derivation
of Algorithms1. 1 A. Kaldewaij. Programming, The Deriva-

tion of Algorithms. Prentice Hall, 1990

Problem

Write a program that swaps elements of an array containing
colors red, white and blue in such a way that the array’s final
state is in accordance with the Dutch National Flag.

We hope to solve this problem in linear time, going only once through
the array in a loop.

Our array is A[0, . . . , n) with

∀i : 0 ≤ i < n : A[i] ∈ { , , }

The desired final state of the array has 3 contiguous regions: the red
region, the white region and the blue region. Two indices r and w into
the array are sufficient to show the extent of each region. We define
post condition R

R ≡ (∀i : 0 ≤ i < r : A[i] =)

∧ (∀i : r ≤ i < w : A[i] =)

∧ (∀i : w ≤ i < n : A[i] =)

Our loop invariant P will be a relaxation2 of the post condition R. 2 Relaxation is a common technique to
derive a useful loop invariant from a
post condition. A common way to do
the relaxation is to introduce a variable
that in the beginning completely relaxes
the condition and that then gradually
changes and tightens the condition to its
final desired form.

We need to introduce a new index variable b to capture the notion of
unprocessed region:

114 math scrapbook

P ≡ (∀i : 0 ≤ i < r : A[i] =)

∧ (∀i : r ≤ i < w : A[i] =)

∧ (∀i : w ≤ i < b : A[i] has not been processed yet)

∧ (∀i : b ≤ i < n : A[i] =)

This allows us to assign values to our indices r, w and b that satisfy
P before the loop starts by extending the unprocessed region to be the
whole array and making the red, white and blue regions empty3: 3 This is the key insight for solving the

problem. Instead of having only three
color regions to work with, we introduce
a fourth region of unprocessed elements
and we gradually shrink it. In the begin-
ning this fourth region is the whole array
and the color regions are all three empty.
As the unprocessed region shrinks, the
color regions start to grow in such a way
that P always stays true. In the end
the unprocessed region is empty and the
three color regions are in their final de-
sired state thanks to P always holding.

r ← 0

w← 0

b← n

Our goal now is to maintain the loop invariant P while reducing the
unprocessed region by processing array elements and swapping them
until the unprocessed region is empty, so b−w = 0 or b = w. We then
have b = w ∧ P ⇒ R. The swapping needs to happen in such a way
that P always holds. We also want to make progress each time through
the loop, so we want b− w to get smaller each time through the loop.
We achieve progress by either increasing w or decreasing b. As long as
b > w we go through the loop.

We will do a case analysis of the state at the region borders of pro-
cessed and unprocessed regions of the array.

Let’s start with a simple case: A[w] = . Then moving w one
position to the right extends the white region, maintains P and shrinks
b−w, so makes progress. We write this down as one case for the loop
body:

if A[w] = then w← w + 1 endif

Because we are inside the loop we know that b > w, so A[b − 1]
exists, ie b− 1 is a valid index position. If A[b− 1] = , then we can
extend the blue region to the left and thus also shrink the unprocessed
region while maintaining P:

if A[b− 1] = then b← b− 1 endif

We have a couple more cases to cover.
If A[w] = then we can do our first swap: we swap A[w] with

A[b− 1] which will allow us after the swap to extend the blue region
to its left as done in the previous case. As before this maintains P and
is progress. Let’s capture this for the body of our loop:

dutch national flag 115

if A[w] = then A[w]↔ A[b− 1] ; b← b− 1 endif

If A[w] = then we can do the following swap: we swap A[r] with
A[w]. We can then extend the red region to its right. Whatever the
white region was (empty or not), it also shifts to the right by one (as a
region it hasn’t changed, just the first white element might have moved
to be the last element of the white region if the white region was not
empty):

if A[w] = then A[w]↔ A[r] ; r ← r + 1 ; w← w + 1 endif

These cases4 are sufficient to allow us to make progress while main- 4 These cases are biased towards making
progress from the left to the right. One
can make similar choices that cover more
cases on the right border of the unpro-
cessed region.

taining P. Because b− w is finite and we reduce it each time through
the loop, the loop will terminate. Our final program (in Go syntax) is:

r := 0

w := 0

b := 0

for w < b {
switch {
case A[w] == White : w = w + 1

case A[b−1] == Blue : b = b − 1

case A[w] == Blue : swap (A[w] , A[b − 1])
b = b − 1

case A[w] == Red : swap (A[w] , A[r])
r = r + 1

w = w + 1

}
}

The loop invariant P is maintained throughout and when the loop
exits, we have b = w which establishes R.

116 math scrapbook

Figure 24.1: Example of processing an
array. The first row is the initial state of
the array. Each row below is one time
through the loop. It is interesting to see
that even though condition R is satisfied
towards the end while b > w, the loop
still has to process elements until b = w,
not doing any more swaps but bringing
w and b ever closer.

25
Bernoulli Inequality

In this note we explore some variants of the Bernoulli Inequality by
following this exercise1. 1 Exercise 1.18 on page 10 in N.L.

Carothers. Real Analysis. Cam-
bridge University Press, 2000. ISBN
9780521497565. URL https://books.

google.com/books?id=4VFDVy1NFiAC

Problem

Given a > 0 show that (1 + a)r > 1 + ar for any rational expo-
nent r > 1.

We need to declare what properties of the real numbers we are al-
lowed to use. This exercise is in the beginning of Real Analysis, so we
are not allowed to deploy any ’heavy machinery’ like derivatives, con-
vex functions etc. We assume the usual properties of R as an ordered
field, but we have not shown yet that m-th roots exist for any positive
real2. 2 We are actually going to sketch that out

in this note because we need it. We have
not defined exponentiation by a rational
exponent yet.

First we prove the inequality for natural numbers n > 1.

Theorem 25.1. Given a > −1 and a ̸= 0, the inequality (1+ a)n > 1+ na
holds for any integer n > 1.

Proof. We are going to use induction to prove this inequality. For n = 2
we have

1 + 2a + a2 > 1 + 2a

which covers the base case. Assume that the inequality holds for n.
For the induction step we have:

(1 + a)n+1 = (1 + a)(1 + a)n > (1 + a)(1 + na)

= 1 + na + a + na2

= 1 + (n + 1)a + na2 > 1 + (n + 1)a

https://books.google.com/books?id=4VFDVy1NFiAC
https://books.google.com/books?id=4VFDVy1NFiAC

118 math scrapbook

The next theorem might look like it is coming out of nowhere but
it is a step in the exercise and there is a connection with the Bernoulli
inequality.

Theorem 25.2. The sequence en = (1 + x
n)

n is increasing for any x > 0.

Proof. We are actually going to use theorem 25.1 to prove this theo-
rem. There are two straightforward ways to prove that a sequence
en increases. One way is to show that en+1 − en > 0 and the other
way is to show that en+1

en
> 1. The second way requires en > 0 which

is the case here. We are choosing the second way because ratios more
closely connect with multiplication and exponents and we hope to find
opportunities to simplify the expressions.

en+1

en
=

(1 + x
n+1)

n+1

(1 + x
n)

n

= (1 +
x
n
)(
(1 + x

n+1)

(1 + x
n)

)n+1

= (1 +
x
n
)(

n + 1 + x
n + x

n
n + 1

)n+1

= (1 +
x
n
)(

(n + 1)n + nx
(n + x)(n + 1)

)n+1

= (1 +
x
n
)(
(n + 1)(n + x)− x
(n + x)(n + 1)

)n+1

= (1 +
x
n
)(1− x

(n + x)(n + 1)
)n+1

The last part of this long chain of equalities has a form that sug-
gests theorem 25.1. We have to make sure that −x

(x+n)(n+1) satisfies the
conditions of that theorem.

−x
(x + n)(n + 1)

> −1⇔ x < (x + n)(n + 1)

⇔ x < nx + x + n2 + n

⇔ 0 < nx + n2 + n

which x > 0 satisfies, so we can apply theorem 25.1. It follows that

en+1

en
> (1 +

x
n
)(1− (n + 1)

x
(n + x)(n + 1)

)

= (1 +
x
n
)(1− x

n + x
)

= (1 +
x
n
)(

n
n + x

)

= 1

bernoulli inequality 119

Next we need m-th roots for any positive real number.

Theorem 25.3. Let x ≥ 0 be a positive real number and let n ≥ 1 be an
integer. Then the set R := {y ∈ R : y ≥ 0, yn ≤ x} is not empty and
bounded above.

Proof. 0 ∈ R, so R is not empty. To find upper bounds for R we will
look at two cases: x > 1 and x ≤ 1.

Let us start with x > 1. Then x itself is an upper bound because
any y > x would have yn > x.

For x ≤ 1 we find that 1 is an upper bound because if y > 1 then
yn > 1 ≥ x, which is a contradiction.

Because of completeness we know that sup(R) exists. We will de-
note x

1
n := sup(R). We still have a little work to do. We are only going

to prove properties of x
1
n necessary for our inequality problem.

Theorem 25.4.

(i) (x
1
n)n = x

(ii) x
1
n ≥ 0

(iii) x1 > x2 ⇔ x
1
n
1 > x

1
n
2

(iv) (x
1
n)

1
m = x

1
mn

Proof. For notational simplicity, we define z := x
1
n = sup(R).

For (i) we prove by contradiction that zn < x and zn > x are impos-
sible.

First assume zn < x. Then x− zn > 0. For any small 0 < ϵ < 1 we
have:

(z + ϵ)n =
n

∑
i=0

(
n
i

)
ϵizn−i

= zn +
n

∑
i=1

(
n
i

)
ϵizn−i

= zn + ϵ
n

∑
i=1

(
n
i

)
ϵi−1zn−i

Since ϵ < 1 we can replace all the ϵi−1 in the sum with 1 to get the
inequality:

(z + ϵ)n ≤ zn + ϵ
n

∑
i=1

(
n
i

)
zn−i

We have the identity:

120 math scrapbook

n

∑
i=1

(
n
i

)
zn−i = zn+1 − zn

so our inequality becomes:

(z + ϵ)n ≤ zn + ϵ(zn+1 − zn)

Now choose ϵ such that

ϵ <
x− zn

zn+1 − zn

and we have

(z + ϵ)n ≤ zn + ϵ(zn+1 − zn)

< zn + (
x− zn

zn+1 − zn)(z
n+1 − zn)

= zn + x− zn = x

This means that (z + ϵ)n ∈ R but z + ϵ > z = sup(R), a contradic-
tion. So zn cannot be smaller than x.

Next assume zn > x. Then zn − x > 0. We proceed similarly to the
previous case. For any small 0 < ϵ < 1 we have:

(z− ϵ)n =
n

∑
i=0

(
n
i

)
(−1)iϵizn−i

= zn +
n

∑
i=1

(
n
i

)
(−1)iϵizn−i

= zn − ϵ
n

∑
i=1

(
n
i

)
(−1)i−1ϵi−1zn−i

Since ϵ < 1 we can replace all the ϵi−1 in the sum with 1 to get the
inequality:

(z− ϵ)n ≥ zn − ϵ
n

∑
i=1

(
n
i

)
zn−i

≥ zn − ϵ(zn+1 − zn)

Again choose ϵ such that

ϵ <
zn − x

zn+1 − zn

(z− ϵ)n ≥ zn − ϵ(zn+1 − zn)

> zn − (
zn − x

zn+1 − zn)(z
n+1 − zn)

= zn + x− zn = x

bernoulli inequality 121

Because z− ϵ < z there must exist y ∈ R such that z− ϵ < y. We
then have

x < (z− ϵ)n < yn ≤ x

which is a contradiction. So zn cannot be greater than x either. The
only possibility left is zn = x.

Both (ii) and (iii) follow from the identity:

(an − bn) = (a− b)(
n−1

∑
i=0

an−1−ibi)

For (iv) we raise both sides to the power of mn:

((x
1
n)

1
m)mn = (((x

1
n)

1
m)m)n

= (x
1
n)n

= x

= (x
1

mn)mn

We are almost ready to define exponentiation by a positive rational
exponents. We need one more theorem:

Theorem 25.5. Given p, q, p′, q′ ∈ N such that pq′ = p′q and with any
real number x > 0 we have

(x
1
q)p = (x

1
q′)p′

Proof. We have pq′ = p′q. We define y = x
1

pq′ = x
1

p′q .
We know from equality (iv) in theorem 25.4 that

y = (x
1
q′)

1
p = (x

1
q)

1
p′

so

yp = x
1
q′ , and yp′ = x

1
q

We then have

(x
1
q)p = (yp′)p = (yp)p′ = (x

1
q′)p′

We can now define exponentiation by r ∈ Q, r > 0. Let r = p
q and

x > 0. Then xr := (x
1
q)p and we know this is well defined.

122 math scrapbook

We are ready to prove the Bernoulli inequality for rational expo-
nents.

The exponent r = p
q is greater than one, so p > q.

We know from theorem 25.2 that en is increasing, so:

(1 +
x
p
)p > (1 +

x
q
)q

We choose x = ap and have:

(1 + a)p > (1 + ar)q

We take the q-th root and we know from property (iii) of theorem
25.4 that

(1 + a)r > 1 + ar

which proves the Bernoulli inequality for rational exponents. We
cannot prove it yet for any real exponent without resorting to limits
which forces us to lose the inequality strictness. Instead let us close
this note with three applications of the Bernoulli inequality3. 3 Exercises 1.19 and 1.20 on page 10 in

N.L. Carothers. Real Analysis. Cam-
bridge University Press, 2000. ISBN
9780521497565. URL https://books.

google.com/books?id=4VFDVy1NFiAC

Theorem 25.6. For 0 < c < 1 we have cn → 0.

Proof.

1
cn = (

1
c
)n

> 1 + n(
1
c
− 1)

> n(
1
c
− 1)

so

0 < cn <
1
n

c
1− c

and cn is being squeezed into converging to zero.

Theorem 25.7. For c > 0 we have n
√

c→ 1.

Proof. We have two cases: c ≥ 1 and c < 1. Let us first deal with c ≥ 1:

(n
√

c)n > 1 + n(n
√

c− 1)

c− 1 > n(n
√

c− 1)
c− 1

n
+ 1 > n

√
c ≥ 1

and n
√

c is squeezed into converging to one.

For the case c < 1 we consider its reciprocal n
√

1
c and the result

follows from the previous case.

https://books.google.com/books?id=4VFDVy1NFiAC
https://books.google.com/books?id=4VFDVy1NFiAC

bernoulli inequality 123

Theorem 25.8. For ai > 0, 1 ≤ i ≤ n we have4 4 This is known as the AGM inequality,
or Arithmetic Geometric Mean inequal-
ity.

n

√
n

∏
i=1

ai ≤
1
n

n

∑
i=1

ai

Proof. We are going to use Bernoulli and induction (as the exercise
hint suggests). For n = 2 we have

√
a1a2 ≤

1
2
(a1 + a2)

⇔ a1a2 ≤
1
4
(a2

1 + 2a1a2 + a2
2)

⇔ 4a1a2 ≤ a2
1 + 2a1a2 + a2

2

⇔ 0 ≤ (a1 − a2)
2

This takes care of the base case. For the induction step we assume
AGM holds for n. We introduce some notation to simplify our expres-
sions: sn := ∑n

i=1 ai, ān := sn
n , pn := ∏n

i=1 ai and finally ḡn := n
√

pn.
We assume ḡn ≤ ān and have to prove ḡn+1 ≤ ān+1.
We consider (ān+1

ān
)n+1 and have:

(
ān+1

ān
)n+1 = (

n
n + 1

sn+1

sn
)n+1

> 1 + (n + 1)(
n

n + 1
sn+1

sn
− 1)

= 1 + (n + 1)
nsn+1 − nsn − sn

(n + 1)sn

= 1 +
nan+1 − sn

sn

=
nan+1

sn

=
an+1

ān

so

(ān+1)
n+1 > an+1(ān)

n ≥ an+1 pn = pn+1

which concludes the induction step and proves AGM.

26
Completeness

Completeness and related properties1 are the topic in this section. 1 Exercise 2.6.7 on page 71 from
Stephen Abbott. Understanding Anal-
ysis. Springer, 2 edition, 2015. ISBN
978-1-4939-2711-1.Consider the function f : Q→ Q defined as follows:

f (x) =

−1 : x2 < 2

1 : otherwise

Even though ∀x ∈ Q : f ′(x) = 0 the function f is not constant.
Furthermore f is continuous in Q and f (0) = −1 < 0 and f (2) = 1 > 0
but there is no c ∈ Q for which f (c) = 0, so the Intermediate Value
Property doesn’t hold2. 2 The Ancient Greeks already discovered

that
√

2 /∈ Q.Clearly R has an additional property which distinguishes it from Q.
This property cannot be deduced from the ordered field axioms3 be- 3 We mean here the axioms of Ad-

dition and Multiplication (Commu-
tativity, Associativity, etc) and Or-
der axioms (Trichotemy, Transitivity,
etc). See http://homepages.math.uic.

edu/~kauffman/axioms1.pdf

cause those are shared by Q and R and we would be able to deduce it
for Q too. It needs to be an additional property. The Dedekind Com-
pleteness Property is most commonly used as this additional property.
We want to explore in this section how Dedekind Completeness relates
to other properties also tied to what makes R different from Q.

The properties we consider are4: 4 For a more detailed view on this topic
and counterexamples of ordered fields
without some of these properties see
J. Propp. Real Analysis in Reverse.
ArXiv e-prints, April 2012. URL https:

//arxiv.org/abs/1204.4483.

Dedekink Completeness Property DDC: Every non-empty real set bounded
from above has a least upper bound.

Cut Property CP: Let A and B be two non-empty subsets of R with
A∩ B = ∅ and A∪ B = R such that ∀a ∈ A and b ∈ B : a < b. Then
there exists a cutpoint c ∈ R such that ∀a ∈ A and b ∈ B : a ≤ c ≤ b.

Archimedean Property AP: ∀x ∈ R : ∃n ∈N with n > x.

Nested Interval Property NIP: Given sequence of non-empty intervals
In, n ∈N with In+1 ⊆ In, then ∩n∈N In ̸= ∅.

Monotone Convergence Property MC: A bounded monotone sequence
converges.

http://homepages.math.uic.edu/~kauffman/axioms1.pdf
http://homepages.math.uic.edu/~kauffman/axioms1.pdf
https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483

completeness 125

Bolzano-Weierstrass Property BW: A bounded sequence has a conver-
gent subsequence.

Cauchy Criterion CC: A sequence converges if and only if it is a Cauchy
sequence.

Ratio Test RT: If limn→∞
|an+1|
|an | = L < 1 then ∑∞

n=1 an converges5. 5 The Ratio Test and the Intermediate Value
Property feel like higher level proper-
ties that use infinite series and contin-
uos functions. We will see in the follow-
ing theorems how they relate to the other
properties.

Intermediate Value Property IV: Given is a continuous function f : [a, b]→
R with f (a) < 0 and f (b) > 0. Then there exists c ∈ [a, b] with
f (c) = 0.

Theorem 26.1. DDC ⇔ CP

Proof. (⇒) We have A and B two non-empty subsets of R with A ∩
B = ∅ and A ∪ B = R such that ∀a ∈ A and b ∈ B : a < b. B is
non-empty, so there exists b ∈ B. This b is an upper bound of A,
so A is bound from above. By the Dedekind Completeness Property
DDC there exists a least upper bound c. We claim that c is the desired
cutpoint. Since c is the least upper bound we already have A ≤ c.
Assume ∃b′ ∈ B with b′ < c. But b′ is an upper bound of A (since
A < B) which means c ≤ b′ because c is the least upper bound. This
is a contradiction, so ∀b′ ∈ B : b′ ≥ c. It follows that A ≤ c ≤ B and c
is the cutpoint.
(⇐) We are given a non-empty set A ⊂ R bound from above, so there
exists b ∈ R : A ≤ b. We define B be the set of upper bounds of
A and let A′ = R \ B. Both A′ and B are non-empty, A′ < B and
A′ ∪ B = R6. By the Cut Property CP there exists a cutpoint c with 6 The set A is bounded from above so

B is non-empty. If A = {a} then A′ is
non-empty (for example (a− 1) ∈ A′). If
|A| > 1 then one of the elements in A
cannot be an upper bound of A which
also implies A′ is non-empty. By defi-
nition A′ ∪ B = R. Assume there exists
a′ ∈ A′ and b′ ∈ B such that a′ ≥ b′.
This would make a′ an upper bound of
A, so a′ ∈ B, a contradiction. It follows
that A′ < B.

A′ ≤ c ≤ B. We claim that c is the least upper bound of A. Assume
there exists a ∈ A with c < a. Then for c′ = c+a

2 we have c < c′ < a.
This implies that c′ ∈ B so c′ is an upper bound of A which contradicts
with c′ < a. We therefore have ∀a ∈ A : a ≤ c and c is an upper bound
of A. Now assume there exists another upper bound d with d < c. But
then d ∈ A′ which contradicts the definition of A′ and B. So for all d
upper bound of A we have d ≥ c. This makes c the least upper bound
of A.

Theorem 26.2. DDC ⇔ NIP + AP7 7 The Nested Intervals Property NIP is
not enough to achieve Dedekind Com-
pleteness DDC. For examples of fields
that are not Archimedean see J. Propp.
Real Analysis in Reverse. ArXiv e-
prints, April 2012. URL https://arxiv.

org/abs/1204.4483. This theorem only
shows that if the Archimedean Property
AP also holds then we can get back from
NIP to DDC.

Proof. (⇒) We have nested intervals In = [an, bn] with In+1 ⊆ In. It
follows that for all n ∈ N we have an+1 ≥ an and bn+1 ≤ bn. Assume
there exists i, j ∈N such that bi < aj. We have three cases:

• i = j: then ai ≤ bi for interval Ii contradicting bi < aj.

• i < j: then bi ≥ bj which yields the inequality chain bj ≤ bi < aj,
contradicting aj ≤ bj for interval Ij.

https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483

126 math scrapbook

• i > j: then ai ≥ aj which yields the inequality chain bi < aj ≤ ai,
contradicting ai ≤ bi for interval Ii.

This means that for all i, j ∈ N we have aj ≤ bi. In other words, the bn

are upper bounds for the set A = {an : n ∈N}.
The set A is bound from above and non-empty, so according to

DDC there exists a least upper bound c. Since it is an upper bound
we already have ∀n ∈ N : an ≤ c. Since c is the least upper bound
and all bn are upper bounds we also have c ≤ bn. It follows that
∀n ∈N : c ∈ In or c ∈ ∩n∈N In. This proves DDC ⇒ NIP.

Assume there exists x ∈ R such that ∀n ∈ N : n ≤ x. This means
that N is bound from above. Let c be the least upper bound for N. We
have

∀n ∈N : n + 1 ∈N⇒ n + 1 ≤ c⇒ n ≤ c− 1

c− 1 is an upper bound, c is the least upper bound so c ≤ c− 1, a
contradiction. This proves DDC ⇒ AP.
(⇐) Consider the non-empty set S ⊆ R bounded from above by b0 ∈
R.

We want to apply NIP, so we define nested intervals around the
upper bounds of S.

Proof Part 26.2.1. S is non-empty, so there exists a0 ∈ S. Define I0 =

[a0, b0]. The strategy now is to halve the interval and narrow it down
but remain with the right endpoint of each interval “on top of” S and
with the left endpoint in S.

Consider m = a0+b0
2 . If [m, b0] ∩ S = ∅ then let a1 = a0 and b1 = m.

If on the other hand ∃s ∈ [m, b0]∩ S then let a1 = s and b1 = b0. Define
I1 = [a1, b1]. Repeat this process to define all In, n ∈N.

The intervals In have the following properties:

P1 : In+1 ⊆ In. This is visible from the definition of In+1. Its endpoints
are either endpoints of In or are points from inside In.

P2 : ∀n ∈ N : bn upper bound of S. We show this by induction on n.
By choice b0 is an upper bound. Now assume that bn is an upper
bound. If bn+1 = bn then it is an upper bound. If bn+1 = an+bn

2 then
because S ∩ [bn+1, bn] = ∅ and it also follows that bn+1 is an upper
bound 8. 8 Assume bn+1 is not an upper bound

of S, so there exists s′ ∈ S with s′ >
bn+1. But by induction bn is an up-
per bound, which means bn+1 < s′ ≤
bn, so s′ ∈ [bn+1, bn], which contradicts
S ∩ [bn+1, bn] = ∅.

P3 : ∀n ∈N: In non-empty. This also follows by induction and by the
field axioms of R.

P4 : ∀n ∈ N : an ∈ S. This follows by induction and definition of left
endpoints.

P5 : ∀n ∈N : |In| ≤ b0−a0
2n . 9 9 We show this by induction on n. Base

case n = 0 holds by definition of I0. As-
sume |In| ≤ b0−a0

2n . For In+1 we observe
that its length is either half that of In or
less than half when [an+bn

2 , bn] ∩ S ̸= ∅

completeness 127

P1 and P3 satisfy the requirements of NIP, so we know α ∈ ∩n∈N In

exists.
We want to show that α = supS.

Proof Part 26.2.2. Assume α is not an upper bound of S. Then there
exists s ∈ S with s > α. Let ϵ = s− α > 0. Using the Archimedean
property we choose m ∈ N such that Im = [am, bm] with |Im| < ϵ
10. Then α ∈ Im, but s /∈ Im and furthermore bm < s. This is a 10 We use property P5. From |Im| ≤

b0−a0
2m < ϵ, we get m > log2(

b0−a0
ϵ).contradiction to property P2, so α is an upper bound of S.

Now assume α is not the smallest upper bound of S. Then there
exists an upper bound β of S with β < α. Let ϵ = α− β > 0. Again we
choose m ∈ N such that Im = [am, bm] with |Im| < ϵ. That pushes am

between β and α: β < am ≤ α. But according to property P4, am ∈ S,
so β < am contradicts the fact that β is an upper bound of S. So α is the
smallest upper bound of S: α = supS. This proves NIP + AP⇒ DDC

Theorem 26.3. DDC ⇔ MC

Proof. (⇒) Given is a monotone increasing sequence (an) bound from
above. We define A = {an : n ∈ N}, a set that is bound from above.
From DDC it follows that least upper bound c of A exists. We want
to show that limn→∞ an = c. For all ϵ > 0 we have c− ϵ < c, so c− ϵ

cannot be an upper bound of A (c is the least upper bound). That
means that there exists n0 ∈N with an0 > c− ϵ. Since the sequence is
monotone increasing, we have

∀n ≥ n0 : an ≥ an0 > c− ϵ⇒ |c− an| < ϵ

which proves an → c.
(⇐) We first want to show MC ⇒ AP. Given MC assume that AP
doesn’t hold, so there exists x ∈ R bigger than any natural number.
This means x is an upper bound for the sequence an = n, a monotone
increasing sequence. From MC it then follows that an converges to a
limit c. The sequence bn = n + 1 is an shifted to the left, so it is also
convergent with the same limit c. Taking the limit on the sequence
equation bn = an + 1 we get c = c + 1, a contradiction. So MC ⇒ AP.

To show that MC ⇒ DDC we are given non-empty set S with a0 ∈ S
bound from above by b0 ∈ R. We define the same nested intervals as
in the Proof Part 26.2.1 of the proof of Theorem 26.2.

The same properties P1 to P5 for In as stated in Proof Part 26.2.1
hold. The sequence (an) is in S and monotone increasing and the
sequence (bn) is made of upper bounds of S and is monotone decreas-
ing. (an) is bound from above and monotone so according to MC it
converges to a limit α.

128 math scrapbook

We want to show that α = supS. We will use the exact same argu-
ment as in the Proof Part 26.2.2 of the proof of Theorem 26.211. This 11 The only difference in the two proofs

is that in this proof MC ensures the ex-
istence of α and in the previous proof it
was NIP.

proves MC ⇒ DDC

Theorem 26.4. DDC ⇔ BW + AP12
12 Once again Bolzano-Weierstrass BW
is not enough to get back to Dedekind
Completeness DDC. We need the field
to be Archimedean AP.

Proof. (⇒) We have already seen DDC ⇒ AP (Theorem 26.2).

Proof Part 26.4.1. To prove DDC ⇒ BW we are given a bounded
sequence (sn):

∃a0, b0 ∈ R such that ∀n ∈N : a0 ≤ sn ≤ b0

We define interval I0 = [a0, b0] and divide it in half at c = a0+b0
2 .

At least one of the two intervals [a0, c], [c, b0] has an infinite number
of elements of the sequence sn

13. Define I1 to be either [a0, c] or [c, b0] 13 Otherwise (sn) would not be an infi-
nite sequence.with an infinite number of elements of sn. We repeat this process re-

cursively, defining Im to be one of the halves of Im−1 that has an infinite
number of elements of (sn). We get a sequence of nested intervals (Im)

of decreasing length |Im| = a0+b0
2m .

We define f : N→N recursively as f (1) = 1

f (n) = min{i > f (n− 1) : si ∈ In−1}

The set {i > f (n− 1) : si ∈ In−1} is a non-empty, infinite subset14 14 By definition of In−1 there are an in-
finite number of elements si in In−1, so
there are an infinite number of indices i
in {i > f (n− 1) : si ∈ In−1}. Also any
non-empty subset of N has a smallest el-
ement.

of N, so its minimum exists and f is well defined and by definition
strictly monotone increasing. We define subsequence (s′n) as s′n =

s f (n), well defined because f is strictly monotone increasing.

Proof Part 26.4.2. From DDC we know that NIP holds so α ∈ ∩m∈N Im

exists. We claim that s′n → α.
Because of AP we have for all ϵ > 0 there exists n0 ∈ N such that

|In0 | < ϵ. We have α ∈ In0 and for all n > f−1(n0) : s′n ∈ In0 . This
means for all n > f−1(n0) : |s′n − α| < ϵ and (s′n) is a subsequence of
(sn) that converges to α.

(⇐)

Proof Part 26.4.3. We are going to prove this direction by going through
NIP. Given nested non-empty intervals In+1 ⊆ In we define sequence
(sn) by choosing an arbitrary element from each In and setting it to
be sn. According to BW there exists a subsequence (s′n) of (sn) that
converges s′n → c. We claim that c ∈ ∩n∈N In.

Proof Part 26.4.4. Assume c /∈ ∩n∈N In. Then there must exist n0 ∈ N

such that c /∈ In0 = [an0 , bn0]. Either c < an0 or c > bn0 . Let’s consider
c < an0 (the other case is very similar). ϵ =

an0−c
2 > 0. We have

s′n → c, so there exists n1 such that ∀n > n1 : |s′n − c| < ϵ. So for

completeness 129

∀n > max(n0, n1) : s′n < c + ϵ < an0 . But (s′n) is a subsequence of
(sn) so there must exist m ∈ N with f−1(m) > max(n0, n1). We have
s′m = s f−1(m) ∈ I f−1(m). So s′m ∈ I f−1(m) ⊆ In0 and s′m < an0 which is a
contradiction. This means c ∈ ∩n∈N In and BW ⇒ NIP which together
with AP gets us to DDC according to Theorem 26.2.

Theorem 26.5. DDC ⇔ CC + AP15 15 As seen before with NIP and BW
the Cauchy Criterion CC is not enough
to get back to Dedekind Complete-
ness DDC. We need the field to be
Archimedean AP.

Proof. (⇒) We have already seen DDC ⇒ AP (Theorem 26.2). To
prove DDC ⇒ CC we are given a Cauchy sequence (an). We first show
that (an) is bounded. From the definition of a Cauchy sequence16 we 16 A sequence (an) is a Cauchy sequence

if ∀ϵ > 0 : ∃N ∈ N such that ∀m, n ≥
N : |am − an| < ϵ.

get for ϵ = 1 there exists N ∈ N such that ∀m ≥ N : |an − aN | < 1 ⇒
|an| < 1 + |aN |. Define M = max{|a1|, |a2|, . . . , |aN−1|, |aN | + 1} and
we have ∀n ∈N : |an| < M.

The Cauchy sequence (an) is bounded so using DDC ⇒ BW from
Theorem 26.4 we know there is a subsequence of (an) that converges.
Let f : N → N be the strictly monotone increasing function that de-
fines the converging subsequence a′n = a f (n) and let limn→∞ a′n = c.

For all ϵ > 0 we have:

∃n1 ∈N such that ∀n ≥ n1 : |an − an1 | <
ϵ

2

and then

∃n2 ≥ f−1(n1) such that ∀n ≥ n2 : |a′n − c| < ϵ

2

So

∀n ≥ n2 : |an − c| = |an − a′n2
+ a′n2

− c| ≤ |an − a′n2
|+ |a′n2

− c|
= |an − a f (n2)

|+ |a′n2
− c| ≤ ϵ

2
+

ϵ

2
= ϵ

It means (an) converges to c and DDC ⇒ CC + AP.
(⇐) We will show that CC + AP ⇒ BW. We are given a bounded
sequence (sn) and we use the same subsequence construction as in the
Proof Part 26.4.1 of Theorem 26.4. We claim that the so constructed
subsequence (s′n) is a Cauchy sequence. Indeed for all ϵ > 0 there
exists N ∈ N such that |IN | < ϵ (again we need AP here). We then
have:

∀m, n ≥ N : s′n, s′m ∈ IN ⇒ |s′n − s′m| ≤ |IN | < ϵ

So (s′n) is a Cauchy sequence and by CC it converges which means
that (sn) has a convergent subsequence.

Finish up.

27
Enigma

Enigma Machines and how the internal wiring of their rotors was
reverse-engineered is the topic of this section. We will follow a sim-
plified version of Rejewski’s description 1 of his work. 1 Marian Rejewski. How Polish mathe-

maticians broke the Enigma cipher. IEEE
Annals of the History of Computing, 3(3):
213–234, 1981. ISSN 1058-6180

An Enigma Machine applies a series of permutations to each typed
letter, mapping it to another letter (which lights up on the Lampboard,
see Figure 27.1), thus encrypting a message2. 2 Enigma machines were used by

the Nazis in WWII to encrypt/de-
crypt messages. The machines are
rotor-based electromechanical type-
writers. http://en.wikipedia.org/

wiki/Enigma_machine has a detailed
description of their internals.

R

Lk L−1
k

Mk M−1
k

Nk N−1
k

P P−1

Keyboard Lampboard

Reflector

Right Rotor

Middle Rotor

Left Rotor

Plugboard

Figure 27.1: Enigma Permutations

Electrical current flows from the typed letter through the plugboard,
then the right rotor, the middle rotor and the left rotor. It then en-
ters the reflector and goes back in reverse order through the same
components ending up on the lampboard where the corresponding
encrypted letter lights up. The plugboard, rotors and reflector have
internal wirings which correspond to permutations in S26

3. The re-

3 S26 is the symmetric group of permuta-
tions of {1, 2, . . . , 26}.

sulting permutation applied to a letter by the Enigma Machine is the
product4:

4 We use the convention of permutation
product as function composition, so for
A, B ∈ S26 we have AB = A ◦ B and
AB(x) = A(B(x)).

P−1N−1
k M−1

k L−1
k RLk Mk NkP

The rotors rotate after each typed letter in the style of an odometer:
the right rotor rotates one position after each typed letter, the middle
rotor rotates one position after each full-circle rotation of the right rotor
and the left rotor rotates one position after each full-circle rotation of
the middle rotor. Rotating the rotors changes the permutations they
will apply to a letter, so their permutations are indexed by k in the
product above and in the Figure 27.1. We will see later how we can
model these rotations with permutations.

The reflector pairs each letter with another (always different) letter,
thus it is a product of 13 disjoint transpositions. A permutation made
out of only disjoint transpositions is called a proper involution. We
will see why the Enigma Machine designers chose a proper involution
for the reflector.

First though we need to collect some facts about permutations that
we will use in our Enigma Machine analysis.

http://en.wikipedia.org/wiki/Enigma_machine
http://en.wikipedia.org/wiki/Enigma_machine

enigma 131

Theorem 27.1. Every permutation can be written as a product of disjoint
cycles. This product is unique (ignoring cycle order and order of elements in
cycle).

Proof. Let π ∈ Sn be a permutation.
We start by choosing an arbitrary x1 ∈ {1, . . . , n} and define for it

the set

Tx1 = {x1, π(x1), π2(x1), . . .}

{1, . . . , n} is finite, Tx1 ⊆ {1, . . . , n}, so Tx1 is finite too. This means
that sooner or later there exist i < j with π j(x1) = πi(x1) or x1 =

π j−i(x1). Then ord(x1) = j− i is the order of x1. It follows that

Tx1 = {x1, π(x1), π2(x1), . . . , πord(x1)−1(x1)}

and Tx1 implies the cycle (x1, π(x1), π2(x1), . . . , πord(x1)−1(x1)). Tx1

is called the π-orbit of x1. Let’s denote this cycle

⟨x1⟩ = (x1, π(x1), π2(x1), . . . , πord(x1)−1(x1))

We now choose an arbitrary x2 ∈ {1, . . . , n} \ Tx1 . If there is no such
x2 we stop this process and jump to the section in the proof after all xk

have been chosen. We similarly define Tx2 and cycle ⟨x2⟩.
Tx2 and Tx1 are disjoint5. 5 Assume y ∈ Tx2 ∩ Tx1 . Then y = πi(x1)

and y = π j(x2). It follows that x2 ∈ Tx1
or x1 ∈ Tx2 , either one of which contra-
dicts how x2 was chosen. Another way
to see this is by defining the following re-
lationship: ∀a, b ∈ Sn : a ∼ b ≡ ∃n ∈ N :
b = πn(a). It’s not hard to see that a ∼ b
so defined is an equivalence relationship
and with it the Txi become equivalence
classes and partition Sn.

We continue and choose an arbitrary x3 ∈ {1, . . . , n} \ (Tx1 ∪ Tx2),
and in general an arbitrary

xk ∈ {1, . . . , n} \ (
k−1⋃
i=1

Txi)

Since all the Txi are non-empty and {1, . . . , n} is finite, we eventually
have to stop. We then have chosen x1, x2, . . . , xk and the corresponding
sets Tx1 , Tx2 , . . . , Txk and cycles ⟨x1⟩, ⟨x2⟩, . . . , ⟨xk⟩.

The sets Txi and their corresponding cycles are by construction pair-
wise disjoint. We also have {1, . . . , n} = ⋃k

i=1 Txi .
We define the permutation ρ as the product of the cycles chosen

above:

ρ =
k

∏
i=1
⟨xi⟩

and show that ρ = π.
For all y ∈ {1, . . . , n} there exists a unique 1 ≤ i ≤ k such that

y ∈ Txi .
6 6 Because {1, . . . , n} =

⋃k
i=1 Txi and

Tx1 , Tx2 , . . . , Txk are pairwise disjoint and
form a partition of {1, . . . , n}.So y = π j(xi) for some index 0 ≤ j < ord(xi). Since the cycles are

disjoint, only cycle ⟨xi⟩ from ρ affects y. We have

132 math scrapbook

ρ(y) = ⟨xi⟩(y)
= ⟨xi⟩(π j(xi))

= π j+1(xi)

= π(π j(xi))

= π(y)

Given two permutations π, ρ ∈ Sn, the product ρπρ−1 is called a
conjugate of π.

Theorem 27.2. Conjugation preserves cycle structure, i.e. conjugates have
cycles of the same length with the same multiplicity.

Incidentally Theorem 27.2 is the reason
why the products πρ and ρπ have the
same cycle structure. Even though in
general πρ ̸= ρπ, πρ and ρπ are conju-
gate. This was the question asked in Ex-
ercise 5.5 on page 34 from Michael Artin.
Algebra. Addison Wesley, 2 edition, 2010.
ISBN 0132413779.

Proof. Consider π, ρ ∈ Sn. From Theorem 27.1 we know that π is a
product of disjoint cycles π = ∏k

i=1 ρi. For the conjugate ρπρ−1 we
can write:

ρπρ−1 = ρρ1ρ2ρ3 . . . ρkρ−1

= ρρ1(ρ
−1ρ)ρ2(ρ

−1 . . . ρ)ρkρ−1

= (ρρ1ρ−1)(ρρ2ρ−1) . . . (ρρkρ−1)

=
k

∏
i=1

ρρiρ
−1

so it is enough to prove the theorem for a cycle.
Let ρ = (a1, a2, . . . , ar) be a cycle of length r. We have

(ρρρ−1)(ρ(ai)) = (ρρ)(ai) = ρ(ai+1)

so ρρρ−1 will have the cycle (ρ(a1), ρ(a2), . . . , ρ(ar)) with length r.
Now assume that x is moved by ρρρ−1, so (ρρρ−1)(x) ̸= x. It follows
that (ρρ−1)(x) ̸= ρ−1(x) or ρ(ρ−1(x)) ̸= ρ−1(x). This means that
ρ−1(x) ∈ (a1, a2, . . . , ar) and x ∈ (ρ(a1), ρ(a2), . . . , ρ(ar)). It follows
that ρρρ−1 = (ρ(a1), ρ(a2), . . . , ρ(ar)). 1

2

3

4

1

2

3

4

Figure 27.2: Initial Rotor

We have seen that an Enigma Machine permutation E is the product

E = P−1N−1
k M−1

k L−1
k RLk Mk NkP

= (Lk Mk NkP)−1R(Lk Mk NkP)

= QRQ−1

with Q = (Lk Mk NkP)−1. This means that E is a conjugate of the
reflector permutation R, and according to Theorem 27.2 has the same

enigma 133

cycle structure as R. So E is a proper involution (because R is) and
also E−1 = E. The same Enigma Machine configuration was used to
encrypt and decrypt a message, which was probably why the Enigma
Machine designers chose a proper involution for R and ultimately for
E. 1

2

3

4

1

2

3

4

Figure 27.3: Rotor after one rotation

Let’s analyse the rotor motion on the example in Figure 27.2. It
shows a small rotor with an internal wiring doing a permutation from
S4. It has 4 inputs/outputs and permutation (12)(34). Rotating it
down one position as in Figure 27.3 doesn’t change its internal wiring
but shifts the inputs/outputs. Input one is now connected to the yel-
low wire instead of the red, input two to the red wire instead of the
blue, etc. The resulting permutation is (14)(23). The inputs have been
shifted according to (4321) and the outputs according to (1234), so
(14)(23) = (1234)(12)(34)(1432). In general one rotation of a rotor is
equivalent to conjugating it with the full cycle permutation σ, in other
words we have Nk+1 = σNkσ−1. To see why this is true, consider input
x touches the red wire in the rotor after the rotation. We don’t know
yet where the rotor will map x. We do know that if x touches the red
wire in the rotor after the rotation, then σ−1(x) is touching the red wire
before the rotation (because all inputs and outputs have been shifted
down). Also we know where the rotor maps any input y before the
rotation, namely to Nk(y). So σ−1(x) is mapped to Nk(σ

−1(x)). And
any output from before the rotation is shifted down once after the ro-
tation, in this case to σ(Nk(σ

−1(x))) after the rotation. Collecting this
tracing into one expression, we have Nk+1(x) = σ(Nk(σ

−1(x))).
Assuming only the right rotor moves, the first six Enigma permuta-

tions are:

A = P−1N−1
0 M−1

0 L−1
0 RL0M0N0P

B = P−1σN−1
0 σ−1M−1

0 L−1
0 RL0M0σN0σ−1P

C = P−1σ2N−1
0 σ−2M−1

0 L−1
0 RL0M0σ2N0σ−2P

D = P−1σ3N−1
0 σ−3M−1

0 L−1
0 RL0M0σ3N0σ−3P

E = P−1σ4N−1
0 σ−4M−1

0 L−1
0 RL0M0σ4N0σ−4P

F = P−1σ5N−1
0 σ−5M−1

0 L−1
0 RL0M0σ5N0σ−5P

(27.1)

The first six permutations are important because of how the German
Nazis chose to operate Enigma. It was known to the code breakers7

7 Marian Rejewski, Henryk Zygalski and
Jerzy Różycki. http://en.wikipedia.

org/wiki/Marian_Rejewski

that after configuring Enigma to its daily settings and before sending
a message, an operator would send a block of three letters twice. The
three letters encoded a message key and because transmission lines
were deemed unreliable, these three letters would be sent twice. This
means that for each message transmission the input to permutations A
and D was the same letter (similar for B and E and for C and F). The

http://en.wikipedia.org/wiki/Marian_Rejewski
http://en.wikipedia.org/wiki/Marian_Rejewski

134 math scrapbook

code breakers had access to two months of intercepted messages and
daily key settings. So they could determine that an unknown letter u
was mapped by A to the observed letter x and by D to the observed
letter y, so A(u) = x and D(u) = y. Because A and D are each proper
involutions8 it also holds that A(x) = u and D(y) = u. It follows that 8 This is one example of why choosing

a proper involution as the encryption
permutation was a bad idea for Enigma
Machines. As it turns out it was fatally
bad: It was the main weakness that
allowed the British bombe machine built
at Bletchley Park by Alan Turing and
Gordon Welchman to decrypt Enigma
encrypted messages. http://en.

wikipedia.org/wiki/Cryptanalysis_

of_the_Enigma#British_bombe

AD(y) = A(D(y)) = A(u) = x. So AD maps one observed letter to
another observed letter. With enough messages in a given day, each
letter of the alphabet will be observed which then completely defines
AD and similarly BE and CF. So for a given day AD, BE and CF were
known permutations. The goal now is to factor AD into A and D.

We need a way to compute how many possible factorizations there
are and a way to generate all possibilities. To accomplish this we need
to collect some properties of products of proper involutions. We will
use a simplified approach similar to the approach described in chapter
3.8 of Lawrence and Zorzitto [2021]9. 9

J.W. Lawrence and F.A. Zorzitto.
An Introduction to Abstract Algebra:
A Comprehensive Introduction. Cam-
bridge Mathematical Textbooks. Cam-
bridge University Press, 2021. ISBN
9781108836654. URL https://books.

google.com/books?id=PvQgEAAAQBAJ

Theorem 27.3. Let π = τρ be the product of proper involutions τ and ρ

and let x ∈ {1, . . . , n}. Then the π-orbits of x and ρ(x) are disjoint and have
equal length.

Proof. Reminder here that the π-orbit of x is

Tx = {x, π(x), π2(x), . . . , πord(x)−1(x)}
Assume the two orbits are not disjoint and y ∈ Tx ∩ Tρ(x). For some

integers i and j we have y = πi(x) = π j(ρ(x)). Let m = ord(ρ(x)) and
let (k− 1)m < j ≤ km for some k. Then

πi+km−j(x) = πkm(ρ(x)) = ρ(x)

Let n = i + km− j and so

ρ(πn(x)) = ρ2(x) = x

because ρ is a proper involution (so it is its own inverse).
We now have two cases: n can be even or odd.
When n = 2l:

ρπn = ρπlπl

= ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
l-times

πl

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
l-times

ρπl

= π−lρπl

This means that ρπn is a conjugate of ρ and thus it is a proper invo-
lution and cannot have x mapping to itself. We have a contradiction.

http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
https://books.google.com/books?id=PvQgEAAAQBAJ
https://books.google.com/books?id=PvQgEAAAQBAJ

enigma 135

When n = 2l + 1:

ρπn = ρπlτρπl

= ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
l-times

τρπl

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
l-times

ρτρπl

= (ρπ)−1τ(ρπl)

This means that ρπn is a conjugate of τ and thus it is a proper
involution and cannot have x mapping to itself. Again we have a
contradiction.

We just showed that the π-orbits of x and ρ(x) are disjoint. To show
that the orbits have the same length, we again reach for this useful
identity: for any integer m we have ρπm = π−mρ. This is because

ρπm = ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
m-times

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
m-times

ρ

= π−mρ

The identity allows for this equivalence:

π−m(ρ(x)) = ρ(x)⇔ ρ(x) = ρ(πm(x))⇔ πm(x) = x

It means that the π−1-orbit of ρ(x) has the same length as the π-
orbit of x. But π−1-orbit and π-orbit of an element are the same10. So 10 Just walk the cycle backwards.

the π-orbits of x and ρ(x) have the same length.

Theorem 27.4. Let π = τρ be the product of proper involutions τ and ρ and
let x ∈ {1, . . . , n}. Then the π-orbits of τ(x) and ρ(x) are equal. In addition
to that, the π-orbit of x is mapped by τ and ρ onto this common π-orbit of
τ(x) and ρ(x).

Proof. Keeping in mind that a proper inversion is its own inverse, we
have:

ρ(x) = ρ(x)

= ρ(τ2(x))

= (ρτ)(τ(x))

= π−1(τ(x))

136 math scrapbook

so then π(ρ(x)) = τ(x) and τ(x) is in the π-orbit of ρ(x).
Using the ρπm = π−mρ identity again, we see that

ρ(πm(x)) = π−m(ρ(x))

so ρ maps the π-orbit of x onto the π-orbit of ρ(x).
To see where τ maps the π-orbit of x we need a similar identity, so

lets deduce it:

τπm = τ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
m-times

= ττ (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
m−1-times

ρ

= π−m+1ρ

= π−m+1π−1τ

= π−mτ

We can use this identity for:

τ(πm(x)) = π−m(τ(x))

= π−m(πρ)(x)

= π1−m(ρ(x))

so τ also maps the π-orbit of x onto the π-orbit of ρ(x).

Theorem 27.5. Let π = τρ be the product of proper involutions τ and ρ and
let x ∈ {1, . . . , n}. Let y /∈ Tx ∪ Tρ(x). Then ρ(y) /∈ Tx ∪ Tρ(x).

Proof. Assume ρ(y) ∈ Tx ∪ Tρ(x). Two cases:
First case: ρ(y) ∈ Tx. Then ρ(y) = πm(x) for some m ∈N. Keeping

in mind again that the a proper involution is its own inverse, we apply
ρ to both sides to get

y = (ρπm)(x) = π−m(ρ(x))

so y ∈ Tρ(x) which is a contradiction.
Second case: ρ(y) ∈ Tρ(x). We proceed similarly:
ρ(y) = πm(ρ(x)) for some m ∈N so

y = (ρπm)(ρ(x)) = π−m(ρρ)(x) = π−m(x)

so y ∈ Tx which is a contradiction.

enigma 137

Theorem 27.6. Let π = τρ be the product of proper involutions τ and ρ.
Then the cycle lengths of π that are greater than one come in even numbers.

Proof. Let (ab) be a cycle of τ. We have two cases:
Case 1: (ab) is also a cycle of ρ. Then the product π has cycles (a)

and (b) of length one.
Case 2: (ab) is not a cycle of ρ. Then it must have a cycle (ac1) for

some c1. In τ there must be a cycle (c1c2) for some c2. In ρ again there
must be a cycle (c2c3) for some c3, . . . (remember, ρ and τ are proper
involutions, so each element participates in one and only one 2-cycle).
We stop with a cycle (c2kb) in ρ, which eventually must happen. Then
the product π has cycles (c2kc2k−2 . . . c2a) and (c1c3c2k−1b) of length k.

We are ready to tackle the factorization. To recap, we have a permu-
tation π that we know and we also know it is a product of two proper
involutions. Our goal is to find out how many possible factorizations
into two proper involutions there are and how do we generate all the
factorizations (because we need the factors to determine the first rotor
wiring).

Theorem 27.7. Let π ∈ S2n be a permutation composed of just two dis-
joint cycles of length n. Then π has exactly n factorizations into two proper
involutions.

Proof. Pick an a ∈ {1, . . . , 2n}. It is part of one of the two cycles.
We are looking for possible π = τρ factorizations, with both τ and
ρ being proper involutions. The two π-orbits of the two cycles are
A := Ta = {a, π(a), . . . , πn−1(a)} and B := S2n \ A.

We are going to construct all the possible ρ using the previous the-
orems as constraints (once a possible ρ is constructed, it also fully
determines the other factor, τ).

For example, because of theorem 27.3 we have to pick some element
from B for ρ(a): ρ(a) ∈ B. We will argue that once this choice has been
made, the complete factorization has been determined. Let’s see why.
What value should ρ(π(a)) take ? Again, using the identity ρπm =

π−mρ, we get ρ(π(a)) = π−1(ρ(a)). By repeatedly using the identity
as we move π-forward in the cycle with a, we move π-backwards in
the other cycle and at each stop we make another pair for the proper
involution ρ.

Figure 27.4 shows the process for an example with two cycles of
length four. After setting an a and picking where to map ρ(a), every-
thing else is determined (the labels in the figure show the expressions
determining the relationships).

There are n ways to pick an element from B, hence we can construct
n different ρ, so n different factorizations π = τρ. It doesn’t matter

138 math scrapbook

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡
<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡
<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="KWzY2bLzO31lK/gWLvxnXW12sCk=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVaa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwBxp2M7w==</latexit>a
<latexit sha1_base64="2XkjGoRYNAktKFc5ZJGN5AjpU90=">AAAB7nicbVDLSgMxFL3xWeur6tJNsAh1U2bE17LoxmUF+4B2KJk004ZmkiHJCGXoR7hxoYhbv8edf2PazkJbD1w4nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR3dRvPTFtuJKPdpywICYDySNOiXVSq6uHqkLOeqWyV/VmwMvEz0kZctR7pa9uX9E0ZtJSQYzp+F5ig4xoy6lgk2I3NSwhdEQGrOOoJDEzQTY7d4JPndLHkdKupMUz9fdERmJjxnHoOmNih2bRm4r/eZ3URjdBxmWSWibpfFGUCmwVnv6O+1wzasXYEUI1d7diOiSaUOsSKroQ/MWXl0nzvOpfVS8fLsq12zyOAhzDCVTAh2uowT3UoQEURvAMr/CGEvSC3tHHvHUF5TNH8Afo8welJ48h</latexit>

⇢(a)

<latexit sha1_base64="u4SQ1kBG+rvl9KLcwlUF8OCbIZ4=">AAAB+nicbVDLTsJAFL31ifgqunQzkZjAQtIaX0uiG5eYyCOhSKbDFCZMp83MVEMqn+LGhca49Uvc+TcO0IWCJ7nJyTn35t57/JgzpR3n21paXlldW89t5De3tnd27cJeQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8HriNx+oVCwSd3oU006I+4IFjGBtpK5d8GJ2nx6745InB1EJl8tdu+hUnCnQInEzUoQMta795fUikoRUaMKxUm3XiXUnxVIzwuk47yWKxpgMcZ+2DRU4pKqTTk8foyOj9FAQSVNCo6n6eyLFoVKj0DedIdYDNe9NxP+8dqKDy07KRJxoKshsUZBwpCM0yQH1mKRE85EhmEhmbkVkgCUm2qSVNyG48y8vksZJxT2vnN2eFqtXWRw5OIBDKIELF1CFG6hBHQg8wjO8wpv1ZL1Y79bHrHXJymb24Q+szx+bkpLw</latexit>

⇡�1(⇢(a))

<latexit sha1_base64="gWsf++UheLGJjdD8H6qcINIkY64=">AAAB+nicbVDLTgIxFO3gC/E16NJNIzGBhWSG+FoS3bjERB4JM5JO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZuZXVtfSO/Wdja3tnds4v7LSUSiUkTCyZkJ0CKMMpJU1PNSCeWBEUBI+1gdD312w9EKir4nR7HxI/QgNOQYqSN1LOLXkzv05PapOzJoSijSqVnl5yqMwNcJm5GSiBDo2d/eX2Bk4hwjRlSqus6sfZTJDXFjEwKXqJIjPAIDUjXUI4iovx0dvoEHhulD0MhTXENZ+rviRRFSo2jwHRGSA/VojcV//O6iQ4v/ZTyONGE4/miMGFQCzjNAfapJFizsSEIS2puhXiIJMLapFUwIbiLLy+TVq3qnlfPbk9L9assjjw4BEegDFxwAergBjRAE2DwCJ7BK3iznqwX6936mLfmrGzmAPyB9fkDnSCS8Q==</latexit>

⇡�2(⇢(a))

<latexit sha1_base64="9DM52WhqxPGhJX+kJRNokvRiA4c=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhVSe6BKeB8ruHAsEn1ITagc12mtOnZkO6Aq9FO4cAAhrnwJN/4Gt80BWkZaaTSzq92dIGZUacf5tnJLyyura/n1wsbm1vaOXdxtKpFITBpYMCHbAVKEUU4ammpG2rEkKAoYaQXD64nfeiBSUcHv9CgmfoT6nIYUI22krl30YnqfHp2My54ciDKqVLp2yak6U8BF4makBDLUu/aX1xM4iQjXmCGlOq4Taz9FUlPMyLjgJYrECA9Rn3QM5Sgiyk+np4/hoVF6MBTSFNdwqv6eSFGk1CgKTGeE9EDNexPxP6+T6PDSTymPE004ni0KEwa1gJMcYI9KgjUbGYKwpOZWiAdIIqxNWgUTgjv/8iJpHlfd8+rZ7WmpdpXFkQf74ACUgQsuQA3cgDpoAAwewTN4BW/Wk/VivVsfs9aclc3sgT+wPn8Anq6S8g==</latexit>

⇡�3(⇢(a))

<latexit sha1_base64="Cys4zx3WOKlewb6qvymw7Vzz2HY=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAYhXsKu+DoGvXiMYB6QLGF2MpuMmZ1ZZmaFsOQfvHhQxKv/482/cZLsQRMLGoqqbrq7woQzbTzv2ymsrK6tbxQ3S1vbO7t77v5BU8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSsc3U791hNVmknxYMYJDWI8ECxiBBsrNbsJq+DTnlv2qt4MaJn4OSlDjnrP/er2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLNrJ+jEKn0USWVLGDRTf09kONZ6HIe2M8ZmqBe9qfif10lNdB1kTCSpoYLMF0UpR0ai6euozxQlho8twUQxeysiQ6wwMTagkg3BX3x5mTTPqv5l9eL+vFy7yeMowhEcQwV8uIIa3EEdGkDgEZ7hFd4c6bw4787HvLXg5DOH8AfO5w/T4o6n</latexit>

⇡(a)

<latexit sha1_base64="Z54V5uYa4oLLdK81jeNMSHb8d+I=">AAAB73icbVDLTgJBEOzBF+IL9ehlIjHBC9klvo5ELx4xkUcCK5kdZmHC7Ow6M2tCNvyEFw8a49Xf8ebfOMAeFKykk0pVd7q7/FhwbRznG+VWVtfWN/Kbha3tnd294v5BU0eJoqxBIxGptk80E1yyhuFGsHasGAl9wVr+6Gbqt56Y0jyS92YcMy8kA8kDTomxUrsb84dqmZz2iiWn4syAl4mbkRJkqPeKX91+RJOQSUMF0brjOrHxUqIMp4JNCt1Es5jQERmwjqWShEx76ezeCT6xSh8HkbIlDZ6pvydSEmo9Dn3bGRIz1IveVPzP6yQmuPJSLuPEMEnni4JEYBPh6fO4zxWjRowtIVRxeyumQ6IINTaigg3BXXx5mTSrFfeicn53VqpdZ3Hk4QiOoQwuXEINbqEODaAg4Ble4Q09ohf0jj7mrTmUzRzCH6DPH/yHj0s=</latexit>

⇡2(a)

<latexit sha1_base64="rM9XSOrmVq+L++Pig11gB8i3Q8c=">AAAB73icbVDLTgJBEOzBF+IL9ehlIjHBC9n1fSR68YiJPBJYyewwCxNmZ9eZWROy4Se8eNAYr/6ON//GAfagYCWdVKq6093lx4Jr4zjfKLe0vLK6ll8vbGxube8Ud/caOkoUZXUaiUi1fKKZ4JLVDTeCtWLFSOgL1vSHNxO/+cSU5pG8N6OYeSHpSx5wSoyVWp2YP5yWyXG3WHIqzhR4kbgZKUGGWrf41elFNAmZNFQQrduuExsvJcpwKti40Ek0iwkdkj5rWypJyLSXTu8d4yOr9HAQKVvS4Kn6eyIlodaj0LedITEDPe9NxP+8dmKCKy/lMk4Mk3S2KEgENhGePI97XDFqxMgSQhW3t2I6IIpQYyMq2BDc+ZcXSeOk4l5Uzu/OStXrLI48HMAhlMGFS6jCLdSgDhQEPMMrvKFH9ILe0cesNYeymX34A/T5A/4Oj0w=</latexit>

⇡3(a)
Figure 27.4: Constructing ρ.

which a we start with. Through the cycle-wise rotation in cycle with a
and counter-cycle rotation in the cycle with ρ(a), we see all n possible
ρ constructions, regardless which a is our anchor. Does it matter from
which cycle we choose the anchor ? It doesn’t because again the same
factorizations would be produced if all the ρ-arrows in figure 27.4 were
reversed.

Now theorem 27.6 assures us that any product of two proper invo-
lutions has cycle lengths greater than one occurring an even number of
times. We can always pair up two cycles of the same length. Theorems
27.4 and 27.5 help us isolate the pairings and construct the factors by
restricting ourselves to each pairing and using the construction from
theorem 27.7 to build the possible factors for each paired restriction.
We multiply all the restricted τ’s to get the unrestricted τ and multiply
all the restricted ρ’s to get the unrestricted ρ.

So how many factorizations are there for a given product π? Lets
say π has 2mk cycles of length k. In how many ways can we pair up
these 2mk cycles?

Theorem 27.8. The number of ways W to form m pairs from the integers
{1, 2, . . . , 2m} is

W =
(2m)!
2mm!

Proof. Integer one can be paired with 2m− 1 other integers. Picking
an unpaired remaining integer, it can be paired with 2m − 3 other
integers, etc.

It follows that

enigma 139

W = (2n− 1)(2n− 3) . . . 5 · 3 · 1

= (2n− 1)(2n− 3) . . . 5 · 3 · 1 · (2m)(2n− 2)(2n− 4) . . . 4 · 2
(2m)(2n− 2)(2n− 4) . . . 4 · 2

=
(2m)!

(2m)(2n− 2)(2n− 4) . . . 4 · 2

=
(2m)!
2mm!

Which means that if π has 2mk cycles of length k, we can produce

kmk (2mk)!
2mk mk!

factorizations restricted to those cycles. Multiplying over all the
possibly cycle lengths greater than one gives us the number of factor-
izations

∏
k cycle length

kmk (2mk)!
2mk mk!

We return to the first six Enigma permutations 27.1. After using
the factorization to factor AD, BE and CF, we know possible solutions
for A, B, C, D, E and F. The plugboard settings P were found out
from French spies, σ is the full cycle permutation. We can drop the
subscripts from M and L because we assume they don’t rotate for the
first six typed letters and from N because we know how to express its
rotations. We get:

A = P−1N−1M−1L−1RLMNP

B = P−1σ−1N−1σM−1L−1RLMσ−1NσP

C = P−1σ−2N−1σ2M−1L−1RLMσ−2Nσ2P

D = P−1σ−3N−1σ3M−1L−1RLMσ−3Nσ3P

E = P−1σ−4N−1σ4M−1L−1RLMσ−4Nσ4P

F = P−1σ−5N−1σ5M−1L−1RLMσ−5Nσ5P

(27.2)

The unknowns in equations 27.2 are M, L, R and N. Our goal is
to compute N. To simplify working with these equations, we define
G = M−1L−1RLM, move as many known permutations as we can to
the left side of the equations and name the left sides U, V, W, X, Y, Z:

140 math scrapbook

U := PAP−1 = N−1GN

V := σPBP−1σ−1 = N−1σGσ−1N

W := σ2PCP−1σ−2 = N−1σ2Gσ−2N

X := σ3PDP−1σ−3 = N−1σ3Gσ−3N

Y := σ4PEP−1σ−4 = N−1σ4Gσ−4N

Z := σ5PFP−1σ−5 = N−1σ5Gσ−5N

(27.3)

We now multiply subsequent equations to get the following five
equations:

UV = N−1GσGσ−1N

VW = N−1σGσGσ−2N

WX = N−1σ2GσGσ−3N

XY = N−1σ3GσGσ−4N

YZ = N−1σ4GσGσ−5N

(27.4)

Figure 27.5: An Enigma on display at
the Museum für Kommunikation Frankfurt
http://www.mfk-frankfurt.de

We eliminate G by inserting VW into the first equation, WX into the
second etc:

UV = N−1σ−1NVWNσN

VW = N−1σ−1NWXNσN

WX = N−1σ−1NXYNσN

XY = N−1σ−1NYZNσN

(27.5)

We define the new unknown H = N−1σ−1N and get

UV = H(VW)H−1

VW = H(WX)H−1

WX = H(XY)H−1

XY = H(YZ)H−1

(27.6)

So UV, VW etc are conjugated by H. Each of the four equations in
27.6 usually yielded several dozen solutions for H and usually there
is only one common solution to all four equations. This gave the code
breakers H and thus N, the internal wiring of the right rotor. The
second rotor was cracked the same way because the German Nazis
switched rotor positions every 3 months11 and a new rotor slid into 11 It is amazing how little things in cryp-

tography can trip up security of a sys-
tem and open the doors to attackers. The
German Nazis no doubt believed that by
switching rotors they would increase the
number of possible permutations (cor-
rect) and thus increase the security of
their system (incorrect).

the rightmost position. Rejewski and his team had daily keys for two
months which happened to overlap with one rotor switching. They
didn’t have daily keys for a longer period that would span two rotor

http://www.mfk-frankfurt.de

enigma 141

switchings, so they couldn’t use this method to deduce the wiring of
the third rotor. It’s not clear how Rejewski and his colleagues cracked
the wiring of the third rotor and the wiring of the reflector12, but they 12 For more details and possible

solutions, see J. Vábek. On Re-
jewski’s solution of Enigma ci-
pher. In PROCEEDINGS OF WDS
2006. MATFYZPRESS, 2006 http:

//citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.186.9963&rank=1.

did. Using only two months worth of daily keys and intercepted mes-
sages the Polish cryptologists were able to deduce the internal wirings
of the rotors of the Enigma Machine and with that were able to build a
functioning replica of it. This achievement jumpstarted the effort of the
British team at Bletchley Park and eventually resulted in the capability
of the Allied Forces to listen in on all the transmissions encrypted with
Enigma.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1

28
Burnside Pólya Counting

Burnside Pólya Counting is the topic of this note. Group theory
is very rich in structure1. Its use in counting combinatorial objects is a 1 It’s so rich that there are often many

ways to prove some properties. I will try
to write this note mostly from memory
and will probably use awkward detours
where more efficient ways are available.

very cool application and a fine excuse to explore it.

Motivating Example

Figure 28.1: Paper strip with eleven cells
colored with four colors.

Suppose you want to count in how many ways you can color a paper
strip (like in figure 28.1) with k cells using n colors. That is pretty
simple: each cell can be colored in n ways independent of any other
cell and there are k cells, so there are nk ways to color the strip of
paper. Now let us throw in a wrinkle: from a counting perspective a
strip rotated by 180° is considered the same as the original strip, so the
two strips seen in figure 28.2 should be counted as one strip.

Figure 28.2: These two strips are the
same and contribute one to the counting.
The bottom strip has the reversed color
sequence of the top strip.

You would say that’s fine. We just divide by two and get nk

2 . Each
color sequence and its inverse are considered one strip. That is almost
right. There exist color sequence palindromes like the one in figure
28.3. In those cases rotating the strip does not result in a new color
sequence, so it is not correct to divide those by two since there is only
one color sequence associated with a strip. We would be undercount-
ing.

Figure 28.3: Strip with a color sequence
that is the same when read backwards.

So you say fine: we first put those to the side and then divide the
rest by two. Our counting total becomes counting color sequences that
are not palindromes and dividing that number by two and counting
all color sequences that are palindromes. Let’s do that. Let S be the set
of colored paper strips with color sequences that are not palindromes
and let P be the set of colored paper strips with color sequences that
are palindromes.

There are nk color sequences and |P| of them are palindromes. So

number of ways to color a strip = |S|+ |P| = nk − |P|
2

+ |P| = nk

2
+
|P|
2

burnside pólya counting 143

We need to determine the number of palindromes. The color choice
of the first cell also determines the color of the last cell (because it
needs to be the same when read backwards). Similarly the color choice
of the second cell determines the color of the next to last cell and so on.
So we only have half the choices of an unconstrained color sequence.
Therefore

|P| =

n
k
2 , when k is even

n× n
k−1

2 = n
k+1

2 , when k is odd

By using the ceiling function we can collapse the two cases into:

|P| = n⌈
k
2 ⌉

and get

number of ways to color a strip =
nk

2
+

n⌈
k
2 ⌉

2
This wasn’t too bad but one could imagine that more complicated

counting scenarios with objects where different configurations are con-
sidered the same can become quite tricky without a systematic ap-
proach2. Let’s look back at the colored paper strips. Maybe we can 2 For example colored necklaces where

rotation and flipping is considered the
same object. Or counting how many dif-
ferent molecules you can form with a
given number of carbon, hydrogen and
bromine atoms.

tickle out a systematic approach.
We reasoned with colored sequences. A colored sequence and its

flipped counterpart were assigned to a strip. Let’s look closer at the
flipping. Flipping a sequence is an action on the sequence. How do
these actions combine? Flipping it again brings it back to the original
sequence, so flipping it twice is like doing nothing. Seems like we
also need something that represents doing nothing. This points to the
additive group Z2 with zero being the action of doing nothing and
one the action of flipping. But what is an action? From what we just
described, an action binds an element of the group Z2 with an element
of the set of colored sequences (let’s name this set C) and returns a new
element of C. It is a function:

Φ : Z2 × C 7→ C

To be consistent with group structure we want to impose restrictions
on the function Φ and require that it satisfy two properties:

Firstly, the action of the neutral element of the group (in our case it
is zero) should not change the color sequence:

∀c ∈ C : Φ(0, c) = c

And secondly, a sequence of actions should be consistent with the
group operation:

144 math scrapbook

∀c ∈ C and ∀g, h ∈ Z2 : Φ(g + h, c) = Φ(g, Φ(h, c))

With our simple group of only two elements we get ∀c ∈ C:

Φ(0, c) = c

Φ(1, c) = c̄ where c̄ is the reversed color sequence of c

The number of ways to color a strip is a sum of two expressions:

number of ways to color a strip =
nk

2
+
|P|
2

The numerator in the first expression is nk, the size of C, which is
also the size of the subset of elements left unchanged by the action of
the neutral group element zero (since that is the full set C according
to our first restriction on Φ). The numerator in the second expression
is |P|, the size of the subset of elements left unchanged by the action
of the group element one (the flipping). This coincides with the set of
color sequences that are palindromes. The denominator in both cases
is two, the size of the group.

We are going to make a bold statement and posit that this counting
holds for any group and any set: the number of object classes is the
sum of the sizes of subsets that are invariant to the action of a group
element, with the sum taken over all group elements and then divided
by the size of the group.

But first we have to be more precise in describing what we mean by
the general case and what we mean by object classes.

Defining Group Action, Orbit and Stabilizer

Given is a finite set X and a finite group (G, ◦) with neutral element
e ∈ G and g−1 the inverse of g.

Definition 28.1. Group (G, ◦) acts on set X through a function Φ :
G× X 7→ X iff Φ satisfies

∀x ∈ X : Φ(e, x) = x

∀x ∈ X, ∀g, h ∈ G : Φ(g ◦ h, x) = Φ(g, Φ(h, x))

The group action immediately implies some interesting subsets of
X and G. Lets define them:

Definition 28.2. The orbit of x ∈ X is a subset Ox ⊂ X of all the group
actions from G on x:

Ox = {Φ(g, x) : g ∈ G}

burnside pólya counting 145

Orbits are precisely the object classes we mentioned above that we
want to count. In the motivating example above, the orbits are the
color strips and the set X is C, the set of color sequences. So our goal
is to count the number of orbits.

Definition 28.3. The stabilizer of x ∈ X is a subset Sx ⊂ G of all the
group elements of G that keep x unchanged:

Sx = {g ∈ G : Φ(g, x) = x}

In the motivating example above, for a given color sequence, the
stabilizer is either the whole group Z2 if the sequence is a palindrome,
or the stabilizer is the one element set containing just zero if the color
sequence is not a palindrome.

Theorem 28.4. The orbits of a group action partition the set X.

Proof. We will show that group action induces an equivalence relation-
ship ∼ on X. We define

∀x, y ∈ X : x ∼ y iff y ∈ Ox

and show that it is an equivalence relationship. Since Φ(e, x) = x we
have x ∈ Ox, so ∼ is reflexive.

Now assume x ∼ y, which implies y ∈ Ox, so there is a g ∈ G such
that y = Φ(g, x). Then

Φ(g−1, y) = Φ(g−1, Φ(g, x))

= Φ(g−1 ◦ g, x)

= Φ(e, x)

= x

so x ∈ Oy and y ∼ x, ie the relationship is symmetric.
For transitivity, assume x ∼ y and y ∼ z, so there are g, h ∈ G such

that y = Φ(g, x) and z = Φ(h, y). We have

z = Φ(h, y)

= Φ(h, Φ(g, x))

= Φ(h ◦ g, x)

so z ∈ Ox and x ∼ z.

Theorem 28.5. The stabilizer Sx of x ∈ X is a subgroup of G.

146 math scrapbook

Proof. For all g, h ∈ Sx we have:

Φ(g ◦ h−1, x) = Φ(g, Φ(h−1, x))

but

Φ(h−1, x) = Φ(h−1, Φ(h, x)) because h ∈ Sx

= Φ(h−1 ◦ h, x)

= Φ(e, x)

= x

so

Φ(g ◦ h−1, x) = Φ(g, Φ(h−1, x)) = Φ(g, x) = x

because g is also in Sx. It follows that g ◦ h−1 ∈ Sx.

To recap the two important properties: the orbits partition X and a
stabilizer is a subgroup of G.

We are now going to make a slight detour into the world of left
cosets.

Left cosets

Given is a group G and a subgroup U (for notational simplicity in this
subsection we will use multiplicative notation for the group operation
and say 1G is the neutral element). We define the following relation-
ship3 in G: 3 Note that even though we use the same

∼ symbol in this subsection, it is a dif-
ferent relationship from the relationship
in X in the previous subsection.∀g, h ∈ G : g ∼ h iff g−1h ∈ U

We will show that this relationship is an equivalence relationship.
For reflexivity, it’s clear that g−1g = 1G ∈ U, so g ∼ g. For sym-
metry we have g ∼ h, so g−1h ∈ U. But the inverse of an element
from the subgroup is also in the subgroup, so (g−1h)−1 = h−1g ∈ U,
therefore h ∼ g. For transitivity assume g ∼ h and h ∼ f , then
g−1 f = (g−1h)(h−1 f). Both g−1h and h−1 f are in U according to
our assumption, so their composition is too. Therefore g ∼ f .

Lets denote the set of equivalence classes from this relationship with
G/U. Let gU = {gu : u ∈ U}.

For every g ∈ G let [g] be the equivalence class for which g is a
representative. We prove that gU = [g]:

Let h ∈ gU. Then there exists an u ∈ U such that h = gu, so
g−1h = u and g ∼ h according to the definition of ∼. This means that

burnside pólya counting 147

gU ⊆ [g]. Likewise let h ∈ [g]. Then g ∼ h and g−1h = u for some
u ∈ U. This means that h = gu and h ∈ gU, so [g] ⊆ gU.

For every g ∈ G the function fg : U 7→ gU with f (u) = gu is a
bijection4. This means that all equivalence classes have the same size, 4 Easy to see using the group axioms.

namely |U| and we have:

|G| = |U||G/U|
This concludes our small detour5. Let’s go back to the group actions 5 There is a lot more to explore about

cosets. I did say that group theory is rich
in structure. We only pulled in what was
absolutely needed to continue.

and use what we just established.

Burnside’s Lemma

We already know that a stabilizer is a subgroup of G. We can now use

|G| = |Sx||G/Sx|
But what are the elements of G/Sx ? We know from the detour sub-

section that the equivalence classes have the form gSx for some g ∈ G.
Now assume g /∈ Sx. That means Φ(g, x) = y for some y ̸= x in X. But
that y belongs in the orbit of x. There are |Ox| such distinct y and there-
fore |Ox| equivalence classes. We have just proved the orbit-stabilizer
theorem:

Theorem 28.6. For every x ∈ X we have |G| = |Sx||Ox|.

<latexit sha1_base64="o+UVcFXomdLfzRZ3AHpjb18LSN4=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLfy6IblxXsA9JQJtNJO3QyE2ZuhBLyGW5cKOLWr3Hn3zhts9DWAxcO59zLvfeEieAGXPfbKa2srq1vlDcrW9s7u3vV/YO2UammrEWVULobEsMEl6wFHATrJpqROBSsE47vpn7niWnDlXyEScKCmAwljzglYCW/F2lCMy/PzvN+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBcsrvdSwhNAxGTLfUkliZoJsdnKOT6wywJHStiTgmfp7IiOxMZM4tJ0xgZFZ9Kbif56fQnQTZFwmKTBJ54uiVGBQePo/HnDNKIiJJYRqbm/FdERsCmBTqtgQvMWXl0n7rO5d1S8fLmqN2yKOMjpCx+gUeegaNdA9aqIWokihZ/SK3hxwXpx352PeWnKKmUP0B87nDz4FkT4=</latexit>

1

3
<latexit sha1_base64="o+UVcFXomdLfzRZ3AHpjb18LSN4=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLfy6IblxXsA9JQJtNJO3QyE2ZuhBLyGW5cKOLWr3Hn3zhts9DWAxcO59zLvfeEieAGXPfbKa2srq1vlDcrW9s7u3vV/YO2UammrEWVULobEsMEl6wFHATrJpqROBSsE47vpn7niWnDlXyEScKCmAwljzglYCW/F2lCMy/PzvN+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBcsrvdSwhNAxGTLfUkliZoJsdnKOT6wywJHStiTgmfp7IiOxMZM4tJ0xgZFZ9Kbif56fQnQTZFwmKTBJ54uiVGBQePo/HnDNKIiJJYRqbm/FdERsCmBTqtgQvMWXl0n7rO5d1S8fLmqN2yKOMjpCx+gUeegaNdA9aqIWokihZ/SK3hxwXpx352PeWnKKmUP0B87nDz4FkT4=</latexit>

1

3<latexit sha1_base64="o+UVcFXomdLfzRZ3AHpjb18LSN4=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLfy6IblxXsA9JQJtNJO3QyE2ZuhBLyGW5cKOLWr3Hn3zhts9DWAxcO59zLvfeEieAGXPfbKa2srq1vlDcrW9s7u3vV/YO2UammrEWVULobEsMEl6wFHATrJpqROBSsE47vpn7niWnDlXyEScKCmAwljzglYCW/F2lCMy/PzvN+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBcsrvdSwhNAxGTLfUkliZoJsdnKOT6wywJHStiTgmfp7IiOxMZM4tJ0xgZFZ9Kbif56fQnQTZFwmKTBJ54uiVGBQePo/HnDNKIiJJYRqbm/FdERsCmBTqtgQvMWXl0n7rO5d1S8fLmqN2yKOMjpCx+gUeegaNdA9aqIWokihZ/SK3hxwXpx352PeWnKKmUP0B87nDz4FkT4=</latexit>

1

3

<latexit sha1_base64="X7gh+70YmrwoZq+TIHZY280UwKA=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVZLia1l047KCfUAaymQ6aYdOZsLMjVBCPsONC0Xc+jXu/BunbRbaeuDC4Zx7ufeeMBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ3czvPjFtuJKPME1YEJOR5BGnBKzk9yNNaOblWSMfVGtu3Z0DrxKvIDVUoDWofvWHiqYxk0AFMcb33ASCjGjgVLC80k8NSwidkBHzLZUkZibI5ifn+MwqQxwpbUsCnqu/JzISGzONQ9sZExibZW8m/uf5KUQ3QcZlkgKTdLEoSgUGhWf/4yHXjIKYWkKo5vZWTMfEpgA2pYoNwVt+eZV0GnXvqn75cFFr3hZxlNEJOkXnyEPXqInuUQu1EUUKPaNX9OaA8+K8Ox+L1pJTzByjP3A+fwA8gJE9</latexit>

1

2

<latexit sha1_base64="X7gh+70YmrwoZq+TIHZY280UwKA=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVZLia1l047KCfUAaymQ6aYdOZsLMjVBCPsONC0Xc+jXu/BunbRbaeuDC4Zx7ufeeMBHcgOt+O6W19Y3NrfJ2ZWd3b/+genjUMSrVlLWpEkr3QmKY4JK1gYNgvUQzEoeCdcPJ3czvPjFtuJKPME1YEJOR5BGnBKzk9yNNaOblWSMfVGtu3Z0DrxKvIDVUoDWofvWHiqYxk0AFMcb33ASCjGjgVLC80k8NSwidkBHzLZUkZibI5ifn+MwqQxwpbUsCnqu/JzISGzONQ9sZExibZW8m/uf5KUQ3QcZlkgKTdLEoSgUGhWf/4yHXjIKYWkKo5vZWTMfEpgA2pYoNwVt+eZV0GnXvqn75cFFr3hZxlNEJOkXnyEPXqInuUQu1EUUKPaNX9OaA8+K8Ox+L1pJTzByjP3A+fwA8gJE9</latexit>

1

2

<latexit sha1_base64="ip86hMevfmy5VmbH2GW7hIcCE2Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4r2A9IQ9lsN+3SzW7Y3Qgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3s393hNVmknxaGYJDWI8FixiBBsr+YNIYZJ5edbIh9WaW3cXQOvEK0gNCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTvDJINU0wmeIx9S0VOKY6yBYn5+jCKiMUSWVLGLRQf09kONZ6Foe2M8Zmole9ufif56cmagYZE0lqqCDLRVHKkZFo/j8aMUWJ4TNLMFHM3orIBNsUjE2pYkPwVl9eJ92rundTbzxc11rNIo4ynME5XIIHt9CCe2hDBwhIeIZXeHOM8+K8Ox/L1pJTzJzCHzifPz4NkTY=</latexit>

1

5
<latexit sha1_base64="ip86hMevfmy5VmbH2GW7hIcCE2Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4r2A9IQ9lsN+3SzW7Y3Qgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3s393hNVmknxaGYJDWI8FixiBBsr+YNIYZJ5edbIh9WaW3cXQOvEK0gNCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTvDJINU0wmeIx9S0VOKY6yBYn5+jCKiMUSWVLGLRQf09kONZ6Foe2M8Zmole9ufif56cmagYZE0lqqCDLRVHKkZFo/j8aMUWJ4TNLMFHM3orIBNsUjE2pYkPwVl9eJ92rundTbzxc11rNIo4ynME5XIIHt9CCe2hDBwhIeIZXeHOM8+K8Ox/L1pJTzJzCHzifPz4NkTY=</latexit>

1

5
<latexit sha1_base64="ip86hMevfmy5VmbH2GW7hIcCE2Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4r2A9IQ9lsN+3SzW7Y3Qgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3s393hNVmknxaGYJDWI8FixiBBsr+YNIYZJ5edbIh9WaW3cXQOvEK0gNCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTvDJINU0wmeIx9S0VOKY6yBYn5+jCKiMUSWVLGLRQf09kONZ6Foe2M8Zmole9ufif56cmagYZE0lqqCDLRVHKkZFo/j8aMUWJ4TNLMFHM3orIBNsUjE2pYkPwVl9eJ92rundTbzxc11rNIo4ynME5XIIHt9CCe2hDBwhIeIZXeHOM8+K8Ox/L1pJTzJzCHzifPz4NkTY=</latexit>

1

5

<latexit sha1_base64="ip86hMevfmy5VmbH2GW7hIcCE2Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4r2A9IQ9lsN+3SzW7Y3Qgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3s393hNVmknxaGYJDWI8FixiBBsr+YNIYZJ5edbIh9WaW3cXQOvEK0gNCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTvDJINU0wmeIx9S0VOKY6yBYn5+jCKiMUSWVLGLRQf09kONZ6Foe2M8Zmole9ufif56cmagYZE0lqqCDLRVHKkZFo/j8aMUWJ4TNLMFHM3orIBNsUjE2pYkPwVl9eJ92rundTbzxc11rNIo4ynME5XIIHt9CCe2hDBwhIeIZXeHOM8+K8Ox/L1pJTzJzCHzifPz4NkTY=</latexit>

1

5
<latexit sha1_base64="ip86hMevfmy5VmbH2GW7hIcCE2Q=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEao8FLx4r2A9IQ9lsN+3SzW7Y3Qgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tUEdohkkvVD7GmnAnaMcxw2k8UxXHIaS+c3s393hNVmknxaGYJDWI8FixiBBsr+YNIYZJ5edbIh9WaW3cXQOvEK0gNCrSH1a/BSJI0psIQjrX2PTcxQYaVYYTTvDJINU0wmeIx9S0VOKY6yBYn5+jCKiMUSWVLGLRQf09kONZ6Foe2M8Zmole9ufif56cmagYZE0lqqCDLRVHKkZFo/j8aMUWJ4TNLMFHM3orIBNsUjE2pYkPwVl9eJ92rundTbzxc11rNIo4ynME5XIIHt9CCe2hDBwhIeIZXeHOM8+K8Ox/L1pJTzJzCHzifPz4NkTY=</latexit>

1

5

<latexit sha1_base64="ulrbUwBwHgmiwEdcmdxqN8TToOs=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xkWPAi8cEzAOSJcxOepMxs7PLzKwQlnyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXkAiujet+O2vrG5tb24Wd4u7e/sFh6ei4peNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx3cxvP6HSPJYPZpKgH9Gh5CFn1Fip0emXym7FnYOsEi8nZchR75e+eoOYpRFKwwTVuuu5ifEzqgxnAqfFXqoxoWxMh9i1VNIItZ/ND52Sc6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasKqn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa8m8p146pcq+ZxFOAUzuACPLiFGtxDHZrAAOEZXuHNeXRenHfnY9G65uQzJ/AHzucPtfeM3A==</latexit>

X

Figure 28.4: The set X with three orbits.
Each element in an orbit is assigned the
fraction one over the size of the orbit.

With the help of this theorem we can count the number of orbits.
We remember that the orbits partition X. In each orbit Ox we can
assign 1

|Ox | to each member of the orbit. Summing up these assigned
fractions results in the value one for each orbit. So summing up the
fractions over all the elements of X counts the number of orbits as seen
in figure 28.4. The number of orbits becomes:

#orbits = ∑
x∈X

1
|Ox|

From the orbit-stabilizer theorem we know that 1
|Ox | =

|Sx |
|G| , so:

#orbits =
1
|G| ∑

x∈X
|Sx|

This is already pretty good but has the disadvantage that we sum
over the elements of X, which can be large. We want to instead sum
over the elements of G. Let’s look at the definition of Sx again:

Sx = {g ∈ G : Φ(g, x) = x}
Evaluating the size of Sx is equivalent to counting all pairs (g, x) ∈

G× X where Φ(g, x) = x for one particular x and all g. Summing up

148 math scrapbook

all these sizes is equivalent to doing it for all x and all g. We can use
an indicator function to express this: 1Φ : G× X 7→ {0, 1} with

1Φ(g, x) =

1, when Φ(g, x) = x

0, when Φ(g, x) ̸= x

Then |Sx| = ∑g∈G 1Φ(g, x) and

#orbits =
1
|G| ∑

x∈X
∑

g∈G
1Φ(g, x)

We can now invert the double sum order and write

#orbits =
1
|G| ∑

g∈G
∑

x∈X
1Φ(g, x)

Collecting all the indicator values for one fixed g is the same as eval-
uating the size of a subset of X of elements that g keeps unchanged.
Lets denote sets like this fixsets:

Fix(g) = {x ∈ X : Φ(g, x) = x}
so |Fix(g)| = ∑x∈X 1Φ(g, x).
Using this we arrive at the Burnside Lemma:

#orbits =
1
|G| ∑

g∈G
|Fix(g)|

Applications of the Burnside Lemma

As a first application of our lemma, lets revisit the motivating example
of color strips and verify that we get the same answer. According to
the lemma we have

number of ways to color a strip =
1
|Z2|

(|Fix(0)|+ |Fix(1)|)

Clearly Fix(0) are all the color sequences, so |Fix(0)| = nk and
Fix(1) are the color sequences left unchanged by flipping, ie palin-
dromes, so |Fix(1)| = n⌈

k
2 ⌉. Our answer checks out. not rotated rotated clockwise 90°

rotated clockwise 270°rotated clockwise 180°

Figure 28.5: These four configurations
are considered to be the same tablecloth.

The second example is a square tablecloth of five by five cells to
be colored with four colors. Here rotations by 90°, 180° and 270° are
considered the same tablecloth as seen in figure 28.5. This is very
similar to our first example, but here the group acting on the set of
color sequences is the cyclic group Z4. In how many ways can we color
the tablecloth? To apply Burnside we need the sizes of four fixsets. We
again have |Fix(0)| = 425, ie all color sequences are unchanged by not
rotating.

burnside pólya counting 149

Fix(1) is the set of color sequences unchanged by rotating by 90°.
If we divide the cloth into four quadrants (assigning shared boundary
cells like in figure 28.6), it’s clear that a 90°rotation forces the contents
of each quadrant to move to the next quadrant. So if the color sequence
is supposed to stay unchanged then all four quadrants must have the
same contents. The exception is the cell in the middle of the tablecloth.
It is unchanged by any rotation. Therefore |Fix(1)| = 4× 46.

Figure 28.6: The four quadrants of the
tablecloth.

Fix(2) is the set of color sequences unchanged by rotating by 180°.
The quadrants across from each other end up exchanging contents
which means those contents have to be equal for the color sequence to
by unchanged by the rotation. Therefore |Fix(2)| = 4× 412.

And finally Fix(3) is the set of color sequences unchanged by ro-
tating by 270°. The quadrants exchange contents with the quadrant
before them (in clockwise order). Therefore |Fix(3)| = 4× 46.

number of ways to color tablecloth =
1
4
(4× 46 + 4× 412 + 4× 46)

= 2× 46 + 412

= 16785408

The Burnside Lemma is very cool but it doesn’t offer any help de-
termining the sizes of the fixsets. For this we will use Pólya’s method
of counting, which we will explore in the next subsection.

Pólya’s method of counting

We will change the setting slightly. The set X is still the set of color
sequences of length k, but now we make explicit that these sequences
are actually mappings of sequence position to a color from a set C of
colors, so x ∈ X is a function x : {1, 2, . . . , k} 7→ C. And the group
G will now by a subgroup of the symmetric group Sk of permutations
of length k. We define the group action to be the following function
composition:

∀π ∈ Sk, ∀x ∈ X : Φ(π, x) = x ◦ π−1

It’s easy to check that x ◦ π−1 ∈ X and the identity permutation
doesn’t change x. For the second group action restriction we consider
two permutations π, τ ∈ Sk and check:

Φ(π ◦ τ, x) = x ◦ (π ◦ τ)−1

= x ◦ τ−1 ◦ π−1

= Φ(x, τ) ◦ π−1

= Φ(π, Φ(x, τ))

150 math scrapbook

Informally the group action of π on x assigns the color x(i) to posi-
tion π(i) in the new color sequence Φ(π, x). That is because

Φ(π, x)(π(i)) = (x ◦ π−1)(π(i)) = x(i)

Permutations simplify computing the fixsets needed to apply Burn-
side’s lemma. The reason for this is the decomposition of a permu-
tation into disjoint cycles. For a color sequence x to be a member of
the fixset Fix(π) of permutation π, it needs to assign the same color
to every position from a cycle of π. Therefore the cycle structure of a
permutation directly determines the size of its fixset.

Lets use this fact on an example. Consider a necklace with six beads,
each bead can be any of seven colors. How many necklaces can we
make? Since the beads of a necklace are on a closed loop string, it
makes sense to model it like this: we use color sequences of length
six from seven colors. The first bead of a necklace can move from first
to last and all other beads shift over one position. We want to find a
group G for which the orbit of a color sequence is considered the same
necklace. The group generated by the full cycle G =< (1, 2, 3, 4, 5, 6) >
achieves this (because it keeps rotating beads on the closed loop string
as seen in figure 28.7). We use Mathematica to list out the permuta-
tions of this group in cycle notation:

Figure 28.7: These six color sequences
are considered the same necklace. By re-
peatedly applying the full cycle we move
the blue bead around.

In [1] : = GroupElements [
PermutationGroup [{ Cycles [{ { 1 , 2 , 3 , 4 , 5 , 6 } }] }]]

Out [1] = { Cycles [{ }] ,
Cycles [{ { 1 , 2 , 3 , 4 , 5 , 6 } }] ,
Cycles [{ { 1 , 3 , 5 } , { 2 , 4 , 6 } }] ,
Cycles [{ { 1 , 4 } , { 2 , 5 } , { 3 , 6 } }] ,
Cycles [{ { 1 , 5 , 3 } , { 2 , 6 , 4 } }] ,
Cycles [{ { 1 , 6 , 5 , 4 , 3 , 2 } }] }

The fixset sizes are (in cycle notation):

|Fix((1)(2)(3)(4)(5)(6))| = 76

|Fix((1, 2, 3, 4, 5, 6))| = 7

|Fix((1, 3, 5)(2, 4, 6))| = 72

|Fix((1, 4)(2, 5)(3, 6))| = 73

|Fix((1, 5, 3)(2, 6, 4))| = 72

|Fix((1, 6, 5, 4, 3, 2))| = 7

Using Burnside we get:

number of necklaces =
1
6
(76 + 7 + 72 + 73 + 72 + 7) = 19684

burnside pólya counting 151

As always in mathematics, there is way more to say about this sub-
ject (one can for example impose restrictions on the colorings). But I
will stop here for this note.

29
Two algebraic delights

Algebraic representations are the topic of this note. Transform-
ing a structure into a corresponding algebraic representation enables
easier reasoning and unlocks simpler proofs.

We are going to explore two examples of transformations that I
call little algebraic delights. They allow reasoning with ordinary al-
gebraic operations on mathematical objects that are not algebraic at
first glance. The first example will use indicator functions1 to prove 1 D. Pollard. A User’s Guide to Mea-

sure Theoretic Probability. Cambridge
Series in Statistical and Probabilistic
Mathematics. Cambridge University
Press, 2002. ISBN 9780521002899. URL
https://books.google.com/books?id=

B7Ch-c2G21MC

set identities and the second example will use formal languages2 to

2 Ö. Eğecioğlu and A.M. Garsia. Lessons
in Enumerative Combinatorics. Gradu-
ate Texts in Mathematics. Springer In-
ternational Publishing, 2021. ISBN
9783030712501. URL https://books.

google.com/books?id=5BMuEAAAQBAJ

count combinatorial objects.

Indicator functions of sets

When you deal with sets, you usually have to do Boolean algebra.
Proving identities of expressions of set operations can become really
tedious. Let’s say we want to prove that the symmetric difference is
associative, so given three sets A, B, C we have

(A△B)△C = A△(B△C)

where the symmetric difference is defined as

A△B = (A \ B) ∪ (B \ A)

The usual approach of proving is to show that the set on the left
hand side (A△B)△C is a subset of the right hand side A△(B△C) and
vice versa, by tediously following an x ∈ (A△B)△C and showing that
it is also in A△(B△C) and then the reverse.

Instead of that approach let’s try something different. Let U = A ∪ B ∪ C
be the union of all the sets participating in the identity we want to
prove (our universe). We define an indicator function IS : U → {0, 1}
for a subset S ⊆ U of this universe as:

https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=5BMuEAAAQBAJ

two algebraic delights 153

IS(x) =

1 : x ∈ S

0 : x /∈ S

We can combine indicator functions with arithmetic operations in
a point-wise manner in the field Z2. It’s also clear that sets are in a
one-to-one correspondence with their indicator function.

Let’s look at the indicator functions of some set operations3: 3 These identities are easy to prove. Just
remember, the operations are modulo
two and are point-wise, so have to hold
for every x in the universe. For exam-
ple, to prove the last identity IS△T(x) =
IS(x) + IT(x) we can observe that the
symmetric difference shouldn’t include
the intersection of the two sets, ie when
both indicator functions are equal to one.
The sum of 1 + 1 is zero modulo two
so that works out, etc... Also remember
−1 = 1 in Z2.

∀x ∈ U :

IS∪T(x) = max(IS(x), IT(x))

IS∩T(x) = IS(x) · IT(x)

ISc(x) = 1− IS(x)

IS\T(x) = IS(x) · (1− IT(x))

IS△T(x) = IS(x) + IT(x) = IS(x)− IT(x)

Let’s omit the x in these point-wise expressions:

IS∪T = max(IS, IT)

IS∩T = IS · IT

ISc = 1− IS

IS\T = IS · (1− IT)

IS△T = IS + IT = IS − IT

Since we agreed that we will work with the indicator functions of
the sets, we could just drop the I from the notation4: 4 To parse expressions where we

dropped the symbol I, we have to group
set operations and imagine an I in
front of them, ie set operations have
grouping precedent over arithmetic
operations. For example S∪ T ·V means
the point-wise multiplication IS∪T · IV .

S ∪ T = max(S, T)

S ∩ T = S · T
Sc = 1− S

S \ T = S · (1− T)

S△T = S + T = S− T

Given the indicator function equivalent of the symmetric differ-
ence, our initial (A△B)△C = A△(B△C) becomes the almost trivial
(A + B) + C = A + (B + C).

The expression for the union has max which is sometimes conve-
nient but sometimes gets in the way of point-wise arithmetic. But we
can get rid of it by observing that the union is the symmetric difference
plus the intersection:

154 math scrapbook

S ∪ T = S△T + S · T = S + T + S · T

Let’s deploy our new-found powers to something more complicated
and try to prove that

(
n⋂

i=1

Ai)△(
n⋂

i=1

Bi) ⊆
n⋃

i=1

(Ai△Bi)

Two things before we start: our universe expanded to U = (
⋃n

i=1 Ai) ∪ (
⋃n

i=1 Bi)

and we have for subsets S, T ⊆ U :

S ⊆ T ⇔ ∀x ∈ U : IS(x) ≤ IT(x)

Given that inequality and the fact that the range of indicator func-
tions is {0, 1}, when the right-hand side is one then the inequality is
trivially true. The only interesting case is when the right-hand side is
zero. We use the max expression for union and have

n⋃
i=1

(Ai△Bi) = maxn
i=1(Ai − Bi)

This max can only be zero iff all Ai = Bi. But in that case we also
have the left-hand side zero because the left-hand side is

(
n⋂

i=1

Ai)△(
n⋂

i=1

Bi) =
n

∏
i=1

Ai −
n

∏
i=1

Bi

which concludes our proof.

Formal Languages to count combinatorial objects

We will do a very quick, (ahem) informal introduction to Formal Lan-
guages5. We start with an alphabet A which is an ordered set of sym- 5 This should be very familiar for all of

us computer science majors.bols. We want it ordered so that we can do lexicographic ordering of
words from that alphabet. Speaking of words: they are sequences of
symbols from the alphabet. Concatenation of two words w1 and w2

is denoted by w1 · w2 and defined as you would expect. The empty
word ϵ has length zero and is the neutral element of concatenation.
A word w2 is a prefix of a word w1 iff there is a word w3 such that
w1 = w2 · w3. The set of all words (including the empty word ϵ) from
alphabet A is denoted A∗ and the set of all words excluding ϵ is A+.
A subset L ⊆ A∗ is called a language.

We have a couple of ways to form new languages from given ones.
One way is concatenation. Given L1,L2:

L1 · L2 = {w1 · w2 : w1 ∈ L1, w2 ∈ L2}

two algebraic delights 155

The other way is the set union L1 ∪ L2 which becomes more inter-
esting when L1 and L2 are disjoint.

So far so good. Now comes the cool stuff. Given a language L we
define its listing series as:

sL = ∑
w∈L

w

Some notes on this notation: This is a formal sum and should not
be thought of as the normal addition of numbers. The name listing
series hints at its special nature: it lists out the words of a language
in a chain. Using the plus symbol as the chain separator (as opposed
to say the comma) might be confusing in the beginning but it will
pay off later when it is combined with the multiplication symbol used
for concatenation. The words in the sum are usually listed out in
lexicographic order. The usefulness of the listing series will become
apparent when we relate it to concatenation. Let’s look at an example:
L1 = {a, b}:

sL = aa + ab + ba + bb

We take a second language L2 = {c} and now list out the concatena-
tion (the listing operator s has lower precedent than the concatenation
operator, saving us round braces):

sL1 · L2 = aac + abc + bac + bbc

= (aa + ab + ba + bb) · c
= (sL1) · (sL2)

Treating + and · in a strictly symbolic, algebraic way, it looks like ·
distributes over + and preserves the correct meaning of listing series
of the languages involved in the expression. Note that unlike with
the multiplication of numbers, concatenation is not commutative, so
ab and ba are different and aa + ab + ba + bb is not aa + 2ab + bb (that
2 in the last expression doesn’t even make sense). We have to be care-
ful not to cross the line and conflate the operations with the familiar
numeric ones, but if we are careful we can now manipulate languages
algebraically as if they were finite sums of terms (or even infinite sums
as we will see).

Before we can put this to good use, let us also introduce another
notational convenience: exponentiation. We have seen that ab and ba
are not the same, also aab and baa are different. But as a convenience
we can abbreviate aa to a2 and in general a word aa . . . a of length n
formed with one single symbol a as an. That way aab and baa can be
written a2b and ba2 respectively.

156 math scrapbook

Exponentiation can be expanded to languages: Ln is the language
formed by concatenating L with itself n times. We also agree that
L0 = {ϵ}.

One last thing before we start: what should the placeholder symbol
for the empty word in a listing series be? Well, since the empty word
is the neutral element of concatenation and we use "multiplication" as
our concatenation operator, it is befitting to use 1 for the empty word
and this also fits with distribution of concatenation over listing series
and our "exponentiation". For a neat example: consider A = {a} and
list out A∗(purely symbolic6): 6 With a wink towards calculus, we agree

that 1
1−a symbolizes the listing series of

A∗.
sA∗ = 1 + a + a2 + a3 + . . . =

∞

∑
i=0

ai =
1

1− a

We’re ready to do some interesting combinatorics. Until now we
used the subscript on a language symbol like L1 just to make it an
individual and distinguish it from another language L2 in this expo-
sition. From now on we will give it meaning: given a fixed alphabet
we say Ln is the language of all the words with length n from that
alphabet.

It’s not that hard to prove that when n = p + q with n, p, q ∈N then
(over the same alphabet):

Ln = Lp · Lq

sLn = (sLp) · (sLq)

This is really powerful because it is a rich source of recursions
for both the listing series generation and for counting the number of
words in the language.

Consider the alphabet of two symbols: A = {a, b}. Let’s list out
some languages of different lengths from this alphabet:

sL0 = 1

sL1 = a + b

sL2 = aa + ab + ba + bb

sL3 = aaa + aab + aba + baa + abb + bab + bba + bbb

. . .

We observe that sLn = s(a · Ln−1) + s(b · Ln−1) and if Ln−1 is listed
in lexicographic order, then this recursion even preserves the lexico-
graphic order. In essence, it gives us an algorithm to generate words
of a given length in lexicographic order7. 7 It also lets us count the number of

words in Ln: if bn = |Ln| is the number
of words in Ln, then it satisfies the recur-
sion: bn = 2bn−1 and we know b0 = 1.
So no surprise here: bn = 2n.

two algebraic delights 157

(0, 0)

(n, m)

(0, m)

(n, 0) Figure 29.1: Lower left corner of grid is
(0, 0) and upper right corner is (n, m).
Paths are going either up North or right
East, always along an edge in the grid.

Let us expand the language subscript notation with even more mean-
ing. Same two-symbol alphabet A = {a, b}, and now Ln,k means lan-
guage of words of length n with exactly k b’s in them. Then8: 8 If a word of length n with exactly k b’s

starts with an a then it must be followed
by a word of length n− 1 with k b’s. If
on the other hand it starts with a b then
it must be followed by a word of length
n− 1 with k− 1 b’s.

sLn,k = (s a · Ln−1,k) · (s b · Ln−1,k−1)

If we denote the size of language Ln,k with Cn,k = |Ln,k| then we
have the recursion:

Cn,k = Cn−1,k + Cn−1,k−1

and the astute reader recognizes this as the recursion of the bino-
mial coefficients and the Pascal triangle.

If we find a one-to-one correspondence between the combinatorial
objects that we want to reason about and words in a language, then
we can deploy this formal language machinery to generate the objects
(using listing series) and also count them.

As an example of such a correspondence, consider a n × m lattice
grid and East/North lattice paths on that grid.

How many such paths are there that go from (0, 0) to (n, m) ? We
can make a one-to-one correspondence from the set of possible paths
to a language with the two-symbol alphabet {E, N} (E for East, N for
North). Each path has to have n + m segments with n North-going
segments and m East-going segments. The corresponding language L
over the alphabet A = {E, N} consists of words of length n + m with
exactly n N’s (and therefore m E’s). We recognize again the binomial
coefficient and have the number of paths

|L| = Cn+m,n

This was a simple example but the general idea stays the same: find
a bijection between the combinatorial objects and words in a language
over some alphabet and then switch to algebraic series manipulation

158 math scrapbook

of the words. For example, if it is a 3-dimensional lattice grid, then
we expand the alphabet to three symbols and proceed. Sometimes the
language used in the correspondence has very interesting restrictions
such as in a two-symbol alphabet language where the number of a’s
and b’s has to be equal and any prefix of the word has to have at least
as many a’s as b’s9. 9 Words from such a language are called

Dyck words. These words have corre-
spondence to many combinatorial ob-
jects.

30
Bibliography

Stephen Abbott. Understanding Analysis. Springer, 2 edition, 2015. ISBN 978-1-4939-2711-1.

Michael Artin. Algebra. Addison Wesley, 2 edition, 2010. ISBN 0132413779.

M. Beck and R. Geoghegan. The Art of Proof: Basic Training for Deeper Mathematics. Undergraduate Texts in
Mathematics. Springer New York, 2010. ISBN 9781441970237.

Ethan Canin. The Palace Thief Stories, chapter Batorsag and Szerelem, page 87. Random House New York,
1994.

N.L. Carothers. Real Analysis. Cambridge University Press, 2000. ISBN 9780521497565. URL https://books.

google.com/books?id=4VFDVy1NFiAC.

Tung Kam Chuen. 0-1 sequences. 2016. URL https://open.kattis.com/problems/sequences.

Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990.

Freeman J. Dyson. Note 1931-The problem of the pennies. Math. Gaz., 30:231–234, 1946.

Ö. Eğecioğlu and A.M. Garsia. Lessons in Enumerative Combinatorics. Graduate Texts in Mathematics.
Springer International Publishing, 2021. ISBN 9783030712501. URL https://books.google.com/books?

id=5BMuEAAAQBAJ.

A. Engel. Problem-Solving Strategies. Problem Books in Mathematics. Springer New York, 2013. ISBN
9781475789546. URL https://books.google.com/books?id=aUofswEACAAJ.

Jeff Erickson. Algorithms, Etc. 2015. URL http://jeffe.cs.illinois.edu/teaching/algorithms/.

Jeff Erickson. Algorithms — Extended Dance Remix: Fast Fourier Transforms. https://jeffe.cs.illinois.
edu/teaching/algorithms/notes/A-fft.pdf, 2021. [Online; accessed 07-May-2022].

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied Introduction. Addison-Wesley, 3rd
edition, 1993. ISBN 0201549832.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall, 1990.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005. ISBN 0321295358.

https://books.google.com/books?id=4VFDVy1NFiAC
https://books.google.com/books?id=4VFDVy1NFiAC
https://open.kattis.com/problems/sequences
https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=aUofswEACAAJ
http://jeffe.cs.illinois.edu/teaching/algorithms/
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf

160 math scrapbook

Géza Kós. On the grasshopper problem with signed jumps. The American Mathematical Monthly, 118:877–886,
2010. URL https://arxiv.org/abs/1008.2936.

J.W. Lawrence and F.A. Zorzitto. An Introduction to Abstract Algebra: A Comprehensive Introduction. Cambridge
Mathematical Textbooks. Cambridge University Press, 2021. ISBN 9781108836654. URL https://books.

google.com/books?id=PvQgEAAAQBAJ.

N. Loehr. Combinatorics. Discrete Mathematics and Its Applications. CRC Press, 2017. ISBN 9781498780278.

Cosmin Negruseri. Codejam 2008 round 1a: Problem c: Numbers. 2008. URL https://code.google.com/

codejam/contest/32016/dashboard#s=p2.

D. Pollard. A User’s Guide to Measure Theoretic Probability. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 2002. ISBN 9780521002899. URL https://books.google.com/

books?id=B7Ch-c2G21MC.

J. Propp. Real Analysis in Reverse. ArXiv e-prints, April 2012. URL https://arxiv.org/abs/1204.4483.

Marian Rejewski. How Polish mathematicians broke the Enigma cipher. IEEE Annals of the History of Com-
puting, 3(3):213–234, 1981. ISSN 1058-6180.

Romeo Rizzi. A short proof of König’s matching theorem. Journal of Graph Theory, 33(3):138–139, 2000. URL
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf.

Günter Rote. Crossing the Bridge at Night. World Wide Web, http://page.mi.fu-berlin.de/~rote/Papers/
pdf/Crossing+the+bridge+at+night.pdf, 2002.

Alexander Schrijver. On the history of the transportation and maximum flow problems. 2002. URL http:

//homepages.cwi.nl/~lex/files/histtrpclean.pdf.

Spotify. Cat vs dog. 2012. URL https://labs.spotify.com/puzzles/.

T. Tao. An Introduction to Measure Theory. Graduate Studies in Mathematics. American Mathematical Society,
2021. ISBN 9781470466404. URL https://books.google.com/books?id=k0lDEAAAQBAJ.

Michael Tong. Devil’s chessboard. 2013. URL https://brilliant.org/discussions/thread/

the-devils-chessboard/.

J. Vábek. On Rejewski’s solution of Enigma cipher. In PROCEEDINGS OF WDS 2006. MATFYZPRESS, 2006.

Eric W. Weisstein. Greatest dividing exponent. From MathWorld—A Wolfram Web Resource. URL http:

//mathworld.wolfram.com/GreatestDividingExponent.html.

Wikipedia. Inclusion–exclusion principle — Wikipedia, the free encyclopedia. http://en.wikipedia.org/

w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513, 2022. [Online; ac-
cessed 07-May-2022].

https://arxiv.org/abs/1008.2936
https://books.google.com/books?id=PvQgEAAAQBAJ
https://books.google.com/books?id=PvQgEAAAQBAJ
https://code.google.com/codejam/contest/32016/dashboard#s=p2
https://code.google.com/codejam/contest/32016/dashboard#s=p2
https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=B7Ch-c2G21MC
https://arxiv.org/abs/1204.4483
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
http://page.mi.fu-berlin.de/~rote/Papers/pdf/Crossing+the+bridge+at+night.pdf
http://page.mi.fu-berlin.de/~rote/Papers/pdf/Crossing+the+bridge+at+night.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
https://labs.spotify.com/puzzles/
https://books.google.com/books?id=k0lDEAAAQBAJ
https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/
http://mathworld.wolfram.com/GreatestDividingExponent.html
http://mathworld.wolfram.com/GreatestDividingExponent.html
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513

31
Index

Bernstein, 11

binary symmetric channel, 45

bipartite graph, 17

bipartite matching, 17

coin weighings, 88

conjugate, 132

countable set, 28

derangement, 97

Enigma, 130

Fast Fourier Transform, 55

Fibolucci, 31, 113

generator matrix, 44

greatest dividing exponent, 85

Hamming bound, 47

Hamming code, 47

Hamming distance, 44

Hamming weight, 45

inclusion–exclusion principle, 97

integer equation, 58

inversion, 78

involution, 130

license, 2

linear code, 43

loop invariants, 102

minimum distance, 45

Minkowski sum, 55

multiset, 58

network flow, 17

parity check matrix, 44

perfect code, 47

permutation, 130

polynomial multiplication, 55

recurence relations, 81

Schröder, 11

vertex cover, 17

Todo list

Mention puzzle 136 (Catching a Spy) from Levitin: Algorithmic
Puzzles . 28

Explain connection to Hamming codes for number of columns
smaller than 3n − 3 . 96

Finish up. 129

	Preface
	Airplane Seating
	Schröder-Bernstein Theorem
	Bridge Crossings
	Cat vs Dog
	Counting
	Fibolucci
	Grasshopper jumping
	Groovy numbers
	Devil's chessboard
	Maximum subsequence
	Minkowski Sum & Well-spaced triples
	No consecutive integers
	Paying a dollar
	Penn & Teller Full Deck of Cards
	Points on circle
	Prison Cells
	0-1 Sequences
	Last three digits before decimal point
	How many trailing zeros in n!
	Twelve Coins
	Two decks of cards
	While a
	Divisible by three
	Dutch National Flag
	Bernoulli Inequality
	Completeness
	Enigma
	Burnside Pólya Counting
	Two algebraic delights
	Bibliography
	Index

