While a

Loor invariants is the topic of the problem ${ }^{1}$ in this note.

Problem

We start with the state (a, b) where a, b are positive integers. To this initial state we apply the following algorithm:

```
while a > o:
    if a < b:
        (a,b) = (2a, b - a)
    else:
        (a,b) = (a-b, 2b)
```

For which starting positions does the algorithm stop? In how many steps does it stop, if it stops? What can you tell about periods and tails?

We start with $a>0$ and $b>0$. We adopt the following notation: a_{i}, b_{i} are the values after $i \in \mathbb{N}_{\geq 0}$ times through the loop. Before the first time through the loop $a_{0}=a, b_{0}=b$. Let $n=a+b$.

Let's collect some invariants. We will prove all of them by induction on $i \in \mathbb{N}_{\geq 0}$.
Invariant 1.1.

$$
\forall i \geq 0: a_{i}+b_{i}=n
$$

Proof. Base case $a_{0}+b_{0}=a+b=n$ holds by definition of n and $\left(a_{0}, b_{0}\right)$. Assume $a_{i}+b_{i}=n$. For $a_{i+1}+b_{i+1}$ we have two cases:

Case $a_{i}<b_{i}$: Here we have $a_{i+1}=2 a_{i}$ and $b_{i+1}=b_{i}-a_{i}$. So

$$
a_{i+1}+b_{i+1}=2 a_{i}+b_{i}-a_{i}=a_{i}+b_{i}=n
$$

Case $a_{i} \geq b_{i}$: In this case we have $a_{i+1}=a_{i}-b_{i}$ and $b_{i+1}=2 b_{i}$. It follows

$$
a_{i+1}+b_{i+1}=a_{i}-b_{i}+2 b_{i}=a_{i}+b_{i}=n
$$

${ }^{1}$ Problem 4 on page 9 from A. Engel. Problem-Solving Strategies. Problem Books in Mathematics. Springer New York, 2013. ISBN 9781475789546. URL https://books.google.com/books?id= aUofswEACAAJ

Invariant 1.2.

$$
\forall i \geq 0: b_{i}>0
$$

Proof. This follows almost immediately from definitions ${ }^{2}$.

Invariant 1.3.

$$
\forall i \geq 0: a_{i} \geq 0
$$

Proof. This also follows from definitions 3 .

Invariant 1.4.

$$
\forall i \geq 0: a_{i} \equiv 2^{i} a \quad \bmod n
$$

Proof. Base case $a_{0}=a=2^{0} a$ trivially holds. Assume $a_{i} \equiv 2^{i} a \bmod n$.
For a_{i+1} we have two cases:
Case $a_{i}<b_{i}$: Here we have $a_{i+1}=2 a_{i}$. So

$$
\begin{aligned}
a_{i+1} & =2 a_{i} \\
& \equiv 2 \cdot 2^{i} a \quad \bmod n \\
& \equiv 2^{i+1} a \quad \bmod n
\end{aligned}
$$

Case $a_{i} \geq b_{i}$: In this case we have $a_{i+1}=a_{i}-b_{i}$. It follows

$$
\begin{aligned}
a_{i+1} & =a_{i}-b_{i} \\
& \equiv a_{i}+n-b_{i} \quad \bmod n \\
& \equiv a_{i}+a_{i}+b_{i}-b_{i} \quad \bmod n \\
& \equiv 2 a_{i} \quad \bmod n \\
& \equiv 2 \cdot 2^{i} a \quad \bmod n \\
& \equiv 2^{i+1} a \quad \bmod n
\end{aligned}
$$

We will use these 4 invariants $\left(a_{i} \geq 0, b_{i}>0, a_{i}+b_{i}=n\right.$ and $\left.a_{i} \equiv 2^{i} a \bmod n\right)$ to determine for which initial values a and b the loop terminates. To do so we consider $\frac{a}{n}$. Because $0<a<n$ we know that $\frac{a}{n} \in(0,1)$. We look at the expansion of $\frac{a}{n}$ in base 2 .

Theorem 1.1. If the expansion of $\frac{a}{n}$ is finite with k digits $d_{i} \in\{0,1\}$

$$
\frac{a}{n}=\sum_{i=1}^{k} d_{i} 2^{-i}
$$

then $a_{k}=0$ and the loop terminates after k steps.
${ }^{2}$ Base case $b_{0}=b>0$ holds by definition of b. Assume $b_{i}>0$. Again we have two cases. If $a_{i}<b_{i}$ then $b_{i+1}=b_{i}-a_{i}>$ 0 . If $a_{i} \geq b_{i}$ then $b_{i+1}=2 b_{i}>0$.
${ }^{3}$ Base case $a_{0}=a>0$ holds by definition of a. Assume $a_{i} \geq 0$. Again we have two cases. If $a_{i}<b_{i}$ then $a_{i+1}=2 a_{i} \geq 0$. If $a_{i} \geq b_{i}$ then $a_{i+1}=a_{i}-b_{i} \geq 0$.

Proof. From

$$
\frac{a}{n}=\sum_{i=1}^{k} d_{i} 2^{-i}
$$

we get by multiplying both sides with $2^{k} n$:

$$
2^{k} a=\sum_{i=1}^{k} n d_{i} 2^{k-i} \equiv 0 \quad \bmod n
$$

Together with invariant 1.4 we get

$$
a_{k} \equiv 2^{k} a \equiv 0 \quad \bmod n
$$

and because $a_{k} \geq 0, b_{k}>0, a_{k}+b_{k}=n$ we know that $0 \leq a_{k}<n$, so it must be that $a_{k}=0$ and the loop terminates after at most k steps. To show that the loop terminates after exactly k steps, we need to show that $a_{j}>0$ for $0 \leq j<k$. We will do this by finding a contradiction. Assume there exists a $j<k$ such that $a_{j}=0$. Then it also holds that $2^{j} a \equiv 0 \bmod n$.

From

$$
\frac{a}{n}=\sum_{i=1}^{k} d_{i} 2^{-i}
$$

we get by multiplying both sides with $2^{j} n$:

$$
2^{j} a=\sum_{i=1}^{k} n d_{i} 2^{j-i}=\sum_{i=1}^{j} n d_{i} 2^{j-i}+\sum_{i=j+1}^{k} n d_{i} 2^{j-i} \equiv 0 \quad \bmod n
$$

$2^{j} a \equiv 0 \bmod n$, so $2^{j} a=n q$ for some $q \in \mathbb{Z}$. Then

$$
q=\sum_{i=1}^{j} d_{i} 2^{j-i}+\sum_{i=j+1}^{k} d_{i} 2^{j-i}
$$

We have $q \in \mathbb{Z}, \sum_{i=1}^{j} d_{i} 2^{2-i} \in \mathbb{Z}$, but $\sum_{i=j+1}^{k} d_{i} 2^{j-i} \notin \mathbb{Z}$, because $d_{i} \in\{0,1\}$. This is a contradiction.

We arrived at a neat result: if the binary expansion of $\frac{a}{a+b}$ is finite with k digits, then the loop terminates after k steps.

What can we say if the expansion is not finite but instead has a repeating pattern with a prefix and a period (the only other option ${ }^{4}$) ? For starters, we can use a contradiction similar to the earlier one to prove that the loop does not terminate. Consider the infinite binary expansion:

$$
\frac{a}{n}=\sum_{i=1}^{\infty} d_{i} 2^{-i}
$$

Assume there is a k for which $a_{k}=0$. Then by multiplying the expansion with $2^{k} n$ we get:

$$
2^{k} a=\sum_{i=1}^{k} n d_{i} 2^{k-i}+\sum_{i=k+1}^{\infty} n d_{i} 2^{k-i} \equiv 0 \quad \bmod n
$$

So for some $q \in \mathbb{Z}$ such that $2^{k} a=n q$ we have

$$
q=\sum_{i=1}^{k} d_{i} 2^{k-i}+\sum_{i=k+1}^{\infty} d_{i} 2^{k-i}
$$

The left side and the first sum on the right both belong to \mathbb{Z} but the second sum does not, which is a contradiction. This means, that $\forall k: a_{k}>0$ and the loop does not terminate.

At this point we will do a small digression and prove some theorems about decimal expansion.

Theorem 1.2. Given an integer $p>1$, the series

$$
\sum_{i=1}^{\infty} \frac{d_{i}}{p^{i}}
$$

with $d_{i} \in\{0,1, \ldots, p-1\}$ converges to a value $x \in[0,1]$.
Proof.

$$
\sum_{i=1}^{n} \frac{d_{i}}{p^{i}} \leq \sum_{i=1}^{n} \frac{p-1}{p^{i}} \underset{n \rightarrow \infty}{\longrightarrow} 1
$$

so the series is bounded and will converge.
Theorem 1.3. For every $x \in[0,1]$ there exists a decimal expansion with base $p>1$ such that

$$
x=\sum_{i=1}^{\infty} \frac{d_{i}}{p^{i}}
$$

with $d_{i} \in\{0,1, \ldots, p-1\}$.
Proof. We divide the interval $[0,1]$ into p intervals $\left[\frac{i}{p}, \frac{i+1}{p}\right]$ with $0 \leq i<$ p. Since $[0,1]=\bigcup_{i=0}^{p-1}\left[\frac{i}{p}, \frac{i+1}{p}\right]$ we know there exists at least one index i with $x \in\left[\frac{i}{p}, \frac{i+1}{p}\right]$. We set $d_{1}=i$ and subdivide $\left[\frac{i}{p}, \frac{i+1}{p}\right]$ into p segments $\left[\frac{i}{p}, \frac{i+1}{p}\right]=\bigcup_{j=0}^{p-1}\left[\frac{d_{1}}{p}+\frac{j}{p^{2}}, \frac{d_{1}}{p}+\frac{j+1}{p^{2}}\right] . x$ is in one of these subintervals and we set d_{2} to be the index of that subinterval and continue in this manner recursively defining all d_{i}. Because of the nested interval property with monotone decreasing length this converges to x.

Another way to prove it is like this:
The case where $x=0$ is trivial (just set all $d_{i}=0$).

For $x>0$ we have:
The set $N_{1}=\left\{k \in \mathbb{N}_{0}: \frac{k}{p}<x\right\}$ is a set of non-negative integers strictly bounded above by p, so it has a largest element and we set $d_{1}=\max \left(N_{1}\right)$. Then $x \leq \frac{d_{1}+1}{p}$ (otherwise $d_{1}+1 \in N_{1}$ and d_{1} wouldn't be the largest element of N_{1}). We therefore have

$$
\frac{d_{1}}{p}<x \leq \frac{d_{1}+1}{p}
$$

We continue and look at $N_{2}=\left\{k \in \mathbb{N}_{0}: \frac{d_{1}}{p}+\frac{k}{p^{2}}<x\right\}$. Again the set N_{2} is strictly bounded above by p and we set $d_{2}=\max \left(N_{2}\right)$. Again we have:

$$
\frac{d_{1}}{p}+\frac{d_{2}}{p^{2}}<x \leq \frac{d_{1}}{p}+\frac{d_{2}+1}{p^{2}}
$$

Having defined $d_{1}, d_{2}, \ldots d_{n-1}$ we can recursively define $d_{n}=\max \left(N_{n}\right)$ with

$$
N_{n}=\left\{k \in \mathbb{N}_{0}: \sum_{i=1}^{n-1} \frac{d_{i}}{p^{i}}+\frac{k}{p^{n}}<x\right\}
$$

Again $p \notin N_{n}$, so the definition is valid and the following inequalities hold:

$$
\sum_{i=1}^{n} \frac{d_{i}}{p^{i}}<x \leq \sum_{i=1}^{n-1} \frac{d_{i}}{p^{i}}+\frac{d_{n}+1}{p^{n}}
$$

We define $u_{n}=\sum_{i=1}^{n} \frac{d_{i}}{p^{i}}, v_{n}=\sum_{i=1}^{n-1} \frac{d_{i}}{p^{i}}+\frac{d_{n}+1}{p^{n}}$ and $w_{n}=\frac{d_{n+1}+1}{p^{n+1}}$. u_{n} is monotone increasing and bounded above, so it converges. For v_{n} we have

$$
\begin{aligned}
& v_{n} \geq v_{n+1} \\
& \Leftrightarrow \sum_{i=1}^{n-1} \frac{d_{i}}{p^{i}}+\frac{d_{n}+1}{p^{n}} \geq \sum_{i=1}^{n} \frac{d_{i}}{p^{i}}+\frac{d_{n+1}+1}{p^{n+1}} \\
& \Leftrightarrow \frac{d_{n}+1}{p^{n}} \geq \frac{d_{n}}{p^{n}}+\frac{d_{n+1}+1}{p^{n+1}} \\
& \Leftrightarrow \frac{1}{p^{n}} \geq \frac{d_{n+1}+1}{p^{n+1}} \\
& \Leftrightarrow p \geq d_{n+1}+1
\end{aligned}
$$

which holds by definition of d_{n+1}. So v_{n} is monotone decreasing and bounded below, therefore it converges too. w_{n} converges to zero and $v_{n}=u_{n-1}+w_{n}$ therefore

$$
\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} v_{n}=x
$$

Theorem 1.4. Given is base $p>1$ and

$$
x=\sum_{i=1}^{n} \frac{d_{i}}{p^{i}}
$$

with $d_{i} \in\{0,1, \ldots, p-1\}$ and $d_{n} \neq 0$. Then there are two base p expansions of x.

Proof. The first expansion is $x=\sum_{i=1}^{\infty} \frac{d_{i}}{p^{i}}$ with $d_{i}=0$ for $i>n$. For the second expansion we define the following series:

$$
y=\sum_{i=1}^{n-1} \frac{d_{i}}{p^{i}}+\frac{d_{n}-1}{p^{n}}+\sum_{i=n+1}^{\infty} \frac{p-1}{p^{i}}
$$

and prove that $y=x$. Then the two expansions are $0 . d_{1} d_{2} \ldots d_{n} 00000 \ldots$
and $0 . d_{1} d_{2} \ldots\left(d_{n}-1\right)(p-1)(p-1)(p-1) \ldots$
To prove that $y=x$ we look at

$$
\begin{aligned}
\sum_{i=n+1}^{\infty} \frac{p-1}{p^{i}} & =\frac{p-1}{p^{n}} \sum_{i=1}^{\infty} \frac{1}{p^{i}} \\
& =\frac{p-1}{p^{n}}\left(\sum_{i=0}^{\infty} \frac{1}{p^{i}}-1\right) \\
& =\frac{p-1}{p^{n}}\left(\frac{p}{p-1}-1\right) \\
& =\frac{p-1}{p^{n}} \frac{1}{p-1} \\
& =\frac{1}{p^{n}}
\end{aligned}
$$

So y becomes

$$
y=x-\frac{1}{p^{n}}+\frac{1}{p^{n}}=x
$$

Theorem 1.5. If we disallow series with infinitely repeated $(p-1)$ tail, any $x \in[0,1]$ has a unique decimal expansion in base p.

Proof. Assume two decimal expansions where both agree until index $k-1$ and index k is the first index where they differ.

$$
\begin{aligned}
& x=\sum_{i=1}^{k-1} \frac{d_{i}}{p^{i}}+\frac{e_{k}}{p^{k}}+\sum_{i=k+1}^{\infty} \frac{e_{i}}{p^{i}} \\
& y=\sum_{i=1}^{k-1} \frac{d_{i}}{p^{i}}+\frac{f_{k}}{p^{k}}+\sum_{i=k+1}^{\infty} \frac{f_{i}}{p^{i}}
\end{aligned}
$$

Without loss of generality assume $e_{k}<f_{k}$.

We have

$$
\begin{aligned}
y-x & =\sum_{i=1}^{k-1} \frac{d_{i}}{p^{i}}+\frac{f_{k}}{p^{k}}+\sum_{i=k+1}^{\infty} \frac{f_{i}}{p^{i}}-\sum_{i=1}^{k-1} \frac{d_{i}}{p^{i}}-\frac{e_{k}}{p^{k}}-\sum_{i=k+1}^{\infty} \frac{e_{i}}{p^{i}} \\
& =\frac{f_{k}-e_{k}}{p^{k}}+\sum_{i=k+1}^{\infty} \frac{f_{i}}{p^{i}}-\sum_{i=k+1}^{\infty} \frac{e_{i}}{p^{i}} \\
& =\frac{f_{k}-e_{k}}{p^{k}}+\frac{1}{p^{k}}\left(\sum_{i=1}^{\infty} \frac{f_{k+i}}{p^{i}}-\sum_{i=1}^{\infty} \frac{e_{k+i}}{p^{i}}\right)
\end{aligned}
$$

We denote $u=\sum_{i=1}^{\infty} \frac{f_{k+i}}{p^{i}}$ and $v=\sum_{i=1}^{\infty} \frac{f_{k+i}}{p^{i}}$. Since we disallowed repeated ($p-1$) tail, we know that $0 \leq u<1$ and $0 \leq v<1$, so $-1<u-v<1$. It follows that

$$
0 \leq \frac{f_{k}-e_{k}-1}{p^{k}}<y-x<\frac{f_{k}-e_{k}+1}{p^{k}}
$$

and $x \neq y$.
Theorem 1.6. $x \in[0,1] \cap Q$ if and only if its decimal expansion in base $p>1$ is either finite or has a prefix (of length zero or more) and an infinitely repeating non-zero length pattern tail.

Proof.
(\Rightarrow) :
$x \in[0,1] \cap \mathbb{Q}$, so there exist $m, n \in \mathbb{N}$ with $m<n$ and $x=\frac{m}{n}$. We basically do the long division and present an expansion that will have a repeating tail (if it isn't finite). Let $k \in \mathbb{N}$ be the smallest integer such that $m p^{k} \geq n$ and we do division:

$$
m p^{k}=n q+r
$$

with $0 \leq r<n$. Because k is the smallest integer with $m p^{k} \geq n$ we have $n p>m p^{k}$ (otherwise $k-1$ would be a smaller integer satisfying the same). That means $n p>n q+r$ and thus $p>\frac{n p-r}{n}>q$. This gives us $k-1$ zeros and the first non-zero digit in the expansion, namely q :

$$
\begin{aligned}
\frac{m}{n} & =\frac{1}{p^{k}} \frac{m p^{k}}{n} \\
& =\frac{1}{p^{k}} \frac{n q+r}{n} \\
& =\frac{q}{p^{k}}+\frac{r}{n}
\end{aligned}
$$

We repeat this process with $\frac{r}{n}$. There are only n possible remainders, so if it doesn't end with a remainder of zero it must eventually get a previously seen remainder and so the expansion will repeat itself.

This creates an expansion with an infinitely repeating non-zero length pattern tail. Since it isn't finite, we can disallow repeating $(p-1)$ and from the expansion uniqueness theorem we have proved the (\Rightarrow) direction.
$(\Leftarrow):$
This direction is easy. If it is a finite sum, then it is rational since all the parts are rational. If it is infinite repeating we can eliminate the non-repeating prefix since it is finite and rational and shift the rest. So we can concentrate on a repeating series with a period of length $k-1$:

$$
\begin{aligned}
x & =\sum_{i=0}^{\infty}\left(\frac{1}{p^{k i}} \sum_{j=1}^{k-1} \frac{d_{j}}{p^{j}}\right) \\
& =\left(\sum_{j=1}^{k-1} \frac{d_{j}}{p^{j}}\right) \sum_{i=0}^{\infty} \frac{1}{p^{k i}} \\
& =\left(\sum_{j=1}^{k-1} \frac{d_{j}}{p^{j}}\right)\left(1+\sum_{i=1}^{\infty} \frac{1}{p^{k i}}\right) \\
& =\left(\sum_{j=1}^{k-1} \frac{d_{j}}{p^{j}}\right)\left(1+\sum_{i=1}^{\infty}\left(\frac{1}{p^{k}}\right)^{i}\right) \\
& =\left(\sum_{j=1}^{k-1} \frac{d_{j}}{p^{j}}\right)\left(1+\frac{p^{k}}{p^{k}-1}\right)
\end{aligned}
$$

which is a rational expression.
We return to our problem. We now know the expansion of $\frac{a}{a+b}$ is repeating a period if it doesn't terminate. We will show that the loop also repeats a period of the same length.

Theorem 1.7. If $\frac{a}{n}$ has an expansion in base p which repeats a period of k digits infinitely, then

$$
a p^{k} \equiv a \quad \bmod n
$$

Proof. We have $\frac{a}{n}=0 \cdot \overline{d_{1} d_{2} d_{3} \ldots d_{k}}$ which means

$$
\begin{aligned}
\frac{a}{n} & =0 . \overline{d_{1} d_{2} d_{3} \ldots d_{k}} \\
& =\sum_{i=1}^{k} \frac{d_{i}}{p^{i}}+\frac{1}{p^{k}}\left(\sum_{i=1}^{k} \frac{d_{i}}{p^{i}}+\frac{1}{p^{k}}\left(\sum_{i=1}^{k} \frac{d_{i}}{p^{i}}+\ldots\right.\right. \\
& =\sum_{i=1}^{k} \frac{d_{i}}{p^{i}}+\frac{1}{p^{k}} \frac{a}{n}
\end{aligned}
$$

We multiply both sides by $n p^{k}$ and get

$$
a p^{k}=\sum_{i=1}^{k} n d_{i} p^{k-i}+a
$$

which proves the theorem.
Theorem 1.8. If $\frac{a}{n}$ has an expansion in base p which has a prefix and then repeats a period of k digits infinitely, then

$$
a p^{k} \equiv a \quad \bmod n
$$

Proof. We have $\frac{a}{n}=0 . e_{1} e_{2} e_{3} \ldots e_{l} \overline{d_{1} d_{2} d_{3} \ldots d_{k}}$ which means

$$
\begin{aligned}
\frac{a}{n} & =0 \cdot e_{1} e_{2} e_{3} \ldots e_{l} \overline{d_{1} d_{2} d_{3} \ldots d_{k}} \\
& =\sum_{i=1}^{l} \frac{e_{i}}{p^{i}}+\frac{1}{p^{l}}\left(0 \cdot \overline{d_{1} d_{2} d_{3} \ldots d_{k}}\right)
\end{aligned}
$$

This means

$$
\frac{a p^{l}-\sum_{i=1}^{l} p^{l-i} e_{i} n}{n}=0 \cdot \overline{d_{1} d_{2} d_{3} \ldots d_{k}}
$$

We can then apply the previous theorem to a new $a^{\prime}:=a p^{l}-$ $\sum_{i=1}^{l} p^{l-i} e_{i} n$ and see that

$$
a^{\prime} p^{k} \equiv a^{\prime} \quad \bmod n
$$

But $a^{\prime} \equiv a p^{l} \bmod n$, so

$$
a p^{k+l} \equiv a p^{l} \quad \bmod n
$$

or $a p^{k} \equiv a \bmod n$.
We combine this last result with the invariant 1.4 to see that $a_{i+k}=$ a_{i} and the loop repeats values with period k.

Bibliography

A. Engel. Problem-Solving Strategies. Problem Books in Mathematics. Springer New York, 2013. ISBN 9781475789546. URL https: //books.google.com/books?id=aUofswEACAAJ.

