
While a

Loop invariants is the topic of the problem 1 in this note. 1 Problem 4 on page 9 from A. Engel.
Problem-Solving Strategies. Problem
Books in Mathematics. Springer New
York, 2013. ISBN 9781475789546. URL
https://books.google.com/books?id=

aUofswEACAAJProblem

We start with the state (a, b) where a, b are positive integers. To
this initial state we apply the following algorithm:

while a > 0 :
i f a < b :

( a , b ) = (2 a , b − a )
e lse :

( a , b ) = ( a − b , 2b )

For which starting positions does the algorithm stop? In how
many steps does it stop, if it stops? What can you tell about
periods and tails?

We start with a > 0 and b > 0. We adopt the following notation: ai,
bi are the values after i ∈ N≥0 times through the loop. Before the first
time through the loop a0 = a, b0 = b. Let n = a + b.

Let’s collect some invariants. We will prove all of them by induction
on i ∈ N≥0.

Invariant 1.1.
∀i ≥ 0 : ai + bi = n

Proof. Base case a0 + b0 = a + b = n holds by definition of n and
(a0, b0). Assume ai + bi = n. For ai+1 + bi+1 we have two cases:

Case ai < bi: Here we have ai+1 = 2ai and bi+1 = bi − ai. So

ai+1 + bi+1 = 2ai + bi − ai = ai + bi = n

Case ai ≥ bi: In this case we have ai+1 = ai − bi and bi+1 = 2bi. It
follows

ai+1 + bi+1 = ai − bi + 2bi = ai + bi = n

https://books.google.com/books?id=aUofswEACAAJ
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Invariant 1.2.
∀i ≥ 0 : bi > 0

Proof. This follows almost immediately from definitions 2. 2 Base case b0 = b > 0 holds by defini-
tion of b. Assume bi > 0. Again we have
two cases. If ai < bi then bi+1 = bi − ai >
0. If ai ≥ bi then bi+1 = 2bi > 0.Invariant 1.3.

∀i ≥ 0 : ai ≥ 0

Proof. This also follows from definitions 3. 3 Base case a0 = a > 0 holds by defini-
tion of a. Assume ai ≥ 0. Again we have
two cases. If ai < bi then ai+1 = 2ai ≥ 0.
If ai ≥ bi then ai+1 = ai − bi ≥ 0.Invariant 1.4.

∀i ≥ 0 : ai ≡ 2ia mod n

Proof. Base case a0 = a = 20a trivially holds. Assume ai ≡ 2ia mod n.
For ai+1 we have two cases:

Case ai < bi: Here we have ai+1 = 2ai. So

ai+1 = 2ai

≡ 2 · 2ia mod n

≡ 2i+1a mod n

Case ai ≥ bi: In this case we have ai+1 = ai − bi. It follows

ai+1 = ai − bi

≡ ai + n − bi mod n

≡ ai + ai + bi − bi mod n

≡ 2ai mod n

≡ 2 · 2ia mod n

≡ 2i+1a mod n

We will use these 4 invariants (ai ≥ 0, bi > 0, ai + bi = n and
ai ≡ 2ia mod n) to determine for which initial values a and b the loop
terminates. To do so we consider a

n . Because 0 < a < n we know that
a
n ∈ (0, 1). We look at the expansion of a

n in base 2.

Theorem 1.1. If the expansion of a
n is finite with k digits di ∈ {0, 1}

a
n
=

k

∑
i=1

di2−i

then ak = 0 and the loop terminates after k steps.
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Proof. From

a
n
=

k

∑
i=1

di2−i

we get by multiplying both sides with 2kn:

2ka =
k

∑
i=1

ndi2k−i ≡ 0 mod n

Together with invariant 1.4 we get

ak ≡ 2ka ≡ 0 mod n

and because ak ≥ 0, bk > 0, ak + bk = n we know that 0 ≤ ak < n, so
it must be that ak = 0 and the loop terminates after at most k steps. To
show that the loop terminates after exactly k steps, we need to show
that aj > 0 for 0 ≤ j < k. We will do this by finding a contradiction.
Assume there exists a j < k such that aj = 0. Then it also holds that
2ja ≡ 0 mod n.

From

a
n
=

k

∑
i=1

di2−i

we get by multiplying both sides with 2jn:

2ja =
k

∑
i=1

ndi2j−i =
j

∑
i=1

ndi2j−i +
k

∑
i=j+1

ndi2j−i ≡ 0 mod n

2ja ≡ 0 mod n, so 2ja = nq for some q ∈ Z. Then

q =
j

∑
i=1

di2j−i +
k

∑
i=j+1

di2j−i

We have q ∈ Z, ∑
j
i=1 di2j−i ∈ Z, but ∑k

i=j+1 di2j−i /∈ Z, because
di ∈ {0, 1}. This is a contradiction.

We arrived at a neat result: if the binary expansion of a
a+b is finite

with k digits, then the loop terminates after k steps.
What can we say if the expansion is not finite but instead has a

repeating pattern with a prefix and a period (the only other option 4) 4 That is because a
a+b ∈ Q. See below for

why.? For starters, we can use a contradiction similar to the earlier one to
prove that the loop does not terminate. Consider the infinite binary
expansion:
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a
n
=

∞

∑
i=1

di2−i

Assume there is a k for which ak = 0. Then by multiplying the
expansion with 2kn we get:

2ka =
k

∑
i=1

ndi2k−i +
∞

∑
i=k+1

ndi2k−i ≡ 0 mod n

So for some q ∈ Z such that 2ka = nq we have

q =
k

∑
i=1

di2k−i +
∞

∑
i=k+1

di2k−i

The left side and the first sum on the right both belong to Z but
the second sum does not, which is a contradiction. This means, that
∀k : ak > 0 and the loop does not terminate.

At this point we will do a small digression and prove some theorems
about decimal expansion.

Theorem 1.2. Given an integer p > 1, the series

∞

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p − 1} converges to a value x ∈ [0, 1].

Proof.
n

∑
i=1

di

pi ≤
n

∑
i=1

p − 1
pi −−−→

n→∞
1

so the series is bounded and will converge.

Theorem 1.3. For every x ∈ [0, 1] there exists a decimal expansion with base
p > 1 such that

x =
∞

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p − 1}.

Proof. We divide the interval [0, 1] into p intervals [ i
p , i+1

p ] with 0 ≤ i <

p. Since [0, 1] =
⋃p−1

i=0 [
i
p , i+1

p ] we know there exists at least one index i

with x ∈ [ i
p , i+1

p ]. We set d1 = i and subdivide [ i
p , i+1

p ] into p segments

[ i
p , i+1

p ] =
⋃p−1

j=0 [
d1
p + j

p2 , d1
p + j+1

p2 ]. x is in one of these subintervals and
we set d2 to be the index of that subinterval and continue in this man-
ner recursively defining all di. Because of the nested interval property
with monotone decreasing length this converges to x.

Another way to prove it is like this:
The case where x = 0 is trivial (just set all di = 0).
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For x > 0 we have:
The set N1 = {k ∈ N0 : k

p < x} is a set of non-negative integers
strictly bounded above by p, so it has a largest element and we set
d1 = max(N1). Then x ≤ d1+1

p (otherwise d1 + 1 ∈ N1 and d1 wouldn’t
be the largest element of N1). We therefore have

d1

p
< x ≤ d1 + 1

p

We continue and look at N2 = {k ∈ N0 : d1
p + k

p2 < x}. Again the
set N2 is strictly bounded above by p and we set d2 = max(N2). Again
we have:

d1

p
+

d2

p2 < x ≤ d1

p
+

d2 + 1
p2

Having defined d1, d2, . . . dn−1 we can recursively define dn = max(Nn)

with

Nn = {k ∈ N0 :
n−1

∑
i=1

di

pi +
k
pn < x}

Again p /∈ Nn, so the definition is valid and the following inequali-
ties hold:

n

∑
i=1

di

pi < x ≤
n−1

∑
i=1

di

pi +
dn + 1

pn

We define un = ∑n
i=1

di
pi , vn = ∑n−1

i=1
di
pi +

dn+1
pn and wn = dn+1+1

pn+1 . un

is monotone increasing and bounded above, so it converges. For vn we
have

vn ≥ vn+1

⇔
n−1

∑
i=1

di

pi +
dn + 1

pn ≥
n

∑
i=1

di

pi +
dn+1 + 1

pn+1

⇔ dn + 1
pn ≥ dn

pn +
dn+1 + 1

pn+1

⇔ 1
pn ≥ dn+1 + 1

pn+1

⇔ p ≥ dn+1 + 1

which holds by definition of dn+1. So vn is monotone decreasing
and bounded below, therefore it converges too. wn converges to zero
and vn = un−1 + wn therefore

limn→∞un = limn→∞vn = x
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Theorem 1.4. Given is base p > 1 and

x =
n

∑
i=1

di

pi

with di ∈ {0, 1, . . . , p − 1} and dn ̸= 0. Then there are two base p
expansions of x.

Proof. The first expansion is x = ∑∞
i=1

di
pi with di = 0 for i > n. For the

second expansion we define the following series:

y =
n−1

∑
i=1

di

pi +
dn − 1

pn +
∞

∑
i=n+1

p − 1
pi

and prove that y = x. Then the two expansions are 0.d1d2 . . . dn00000 . . .
and 0.d1d2 . . . (dn − 1)(p − 1)(p − 1)(p − 1) . . .

To prove that y = x we look at

∞

∑
i=n+1

p − 1
pi =

p − 1
pn

∞

∑
i=1

1
pi

=
p − 1

pn (
∞

∑
i=0

1
pi − 1)

=
p − 1

pn (
p

p − 1
− 1)

=
p − 1

pn
1

p − 1

=
1
pn

So y becomes

y = x − 1
pn +

1
pn = x

Theorem 1.5. If we disallow series with infinitely repeated (p − 1) tail, any
x ∈ [0, 1] has a unique decimal expansion in base p.

Proof. Assume two decimal expansions where both agree until index
k − 1 and index k is the first index where they differ.

x =
k−1

∑
i=1

di

pi +
ek

pk +
∞

∑
i=k+1

ei

pi

y =
k−1

∑
i=1

di

pi +
fk

pk +
∞

∑
i=k+1

fi

pi

Without loss of generality assume ek < fk.
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We have

y − x =
k−1

∑
i=1

di

pi +
fk

pk +
∞

∑
i=k+1

fi

pi −
k−1

∑
i=1

di

pi −
ek

pk −
∞

∑
i=k+1

ei

pi

=
fk − ek

pk +
∞

∑
i=k+1

fi

pi −
∞

∑
i=k+1

ei

pi

=
fk − ek

pk +
1
pk (

∞

∑
i=1

fk+i

pi −
∞

∑
i=1

ek+i

pi )

We denote u = ∑∞
i=1

fk+i
pi and v = ∑∞

i=1
fk+i
pi . Since we disallowed

repeated (p − 1) tail, we know that 0 ≤ u < 1 and 0 ≤ v < 1, so
−1 < u − v < 1. It follows that

0 ≤ fk − ek − 1
pk < y − x <

fk − ek + 1
pk

and x ̸= y.

Theorem 1.6. x ∈ [0, 1] ∩ Q if and only if its decimal expansion in base
p > 1 is either finite or has a prefix (of length zero or more) and an infinitely
repeating non-zero length pattern tail.

Proof.
(⇒):
x ∈ [0, 1] ∩ Q, so there exist m, n ∈ N with m < n and x = m

n . We
basically do the long division and present an expansion that will have
a repeating tail (if it isn’t finite). Let k ∈ N be the smallest integer such
that mpk ≥ n and we do division:

mpk = nq + r

with 0 ≤ r < n. Because k is the smallest integer with mpk ≥ n we
have np > mpk (otherwise k − 1 would be a smaller integer satisfying
the same). That means np > nq + r and thus p > np−r

n > q. This gives
us k − 1 zeros and the first non-zero digit in the expansion, namely q:

m
n

=
1
pk

mpk

n

=
1
pk

nq + r
n

=
q
pk +

r
n

We repeat this process with r
n . There are only n possible remainders,

so if it doesn’t end with a remainder of zero it must eventually get
a previously seen remainder and so the expansion will repeat itself.
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This creates an expansion with an infinitely repeating non-zero length
pattern tail. Since it isn’t finite, we can disallow repeating (p − 1)
and from the expansion uniqueness theorem we have proved the (⇒)

direction.
(⇐):
This direction is easy. If it is a finite sum, then it is rational since

all the parts are rational. If it is infinite repeating we can eliminate the
non-repeating prefix since it is finite and rational and shift the rest. So
we can concentrate on a repeating series with a period of length k − 1:

x =
∞

∑
i=0

(
1

pki

k−1

∑
j=1

dj

pj )

= (
k−1

∑
j=1

dj

pj )
∞

∑
i=0

1
pki

= (
k−1

∑
j=1

dj

pj )(1 +
∞

∑
i=1

1
pki )

= (
k−1

∑
j=1

dj

pj )(1 +
∞

∑
i=1

(
1
pk )

i)

= (
k−1

∑
j=1

dj

pj )(1 +
pk

pk − 1
)

which is a rational expression.

We return to our problem. We now know the expansion of a
a+b is

repeating a period if it doesn’t terminate. We will show that the loop
also repeats a period of the same length.

Theorem 1.7. If a
n has an expansion in base p which repeats a period of k

digits infinitely, then

apk ≡ a mod n

Proof. We have a
n = 0.d1d2d3 . . . dk which means

a
n
= 0.d1d2d3 . . . dk

=
k

∑
i=1

di

pi +
1
pk (

k

∑
i=1

di

pi +
1
pk (

k

∑
i=1

di

pi + . . .

=
k

∑
i=1

di

pi +
1
pk

a
n

We multiply both sides by npk and get
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apk =
k

∑
i=1

ndi pk−i + a

which proves the theorem.

Theorem 1.8. If a
n has an expansion in base p which has a prefix and then

repeats a period of k digits infinitely, then

apk ≡ a mod n

Proof. We have a
n = 0.e1e2e3 . . . eld1d2d3 . . . dk which means

a
n
= 0.e1e2e3 . . . eld1d2d3 . . . dk

=
l

∑
i=1

ei

pi +
1
pl (0.d1d2d3 . . . dk)

This means

apl − ∑l
i=1 pl−iein
n

= 0.d1d2d3 . . . dk

We can then apply the previous theorem to a new a′ := apl −
∑l

i=1 pl−iein and see that

a′pk ≡ a′ mod n

But a′ ≡ apl mod n, so

apk+l ≡ apl mod n

or apk ≡ a mod n.

We combine this last result with the invariant 1.4 to see that ai+k =

ai and the loop repeats values with period k.
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