While a

Loor INVARIANTS is the topic of the problem * in this note.

We start with the state (a,b) where a, b are positive integers. To
this initial state we apply the following algorithm:

while a > o:
if a < b:
(a,b) = (2a, b - a)
else:
(a,b) = (a - b, 2b)

For which starting positions does the algorithm stop? In how
many steps does it stop, if it stops? What can you tell about
periods and tails?

We start with a > 0 and b > 0. We adopt the following notation: a;,
b; are the values after i € IN>( times through the loop. Before the first
time through the loop a9 =4, by = b. Letn =a + 0.
Let’s collect some invariants. We will prove all of them by induction
onic IN>o.
Invariant 1.1.
Vi>0:a;+b;=mn

Proof. Base case ag + by = a+ b = n holds by definition of n and
(ag, by). Assume a; + b; = n. For a; 1 + b; 1 we have two cases:
Case a; < b;: Here we have a;,1 = 2a; and b; ;1 = b; — a;. So

ip1+biy1 =2a;+bj—a; =a;+bi=n

Case a; > b;: In this case we have a;11 = a; — b; and b; 1 = 2b;. It
follows

fiy1 + b1 = a; = bj+2b; = a; +bj =n
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O
Invariant 1.2.
Vi>0:b;>0
Proof. This follows almost immediately from definitions 2.
O
Invariant 1.3.
Vi Z 0: a; Z 0
Proof. This also follows from definitions 3.
O

Invariant 1.4.
Vi>0:4;,=2'a modn

Proof. Base case ag = a = 2%a trivially holds. Assume a; = 2'a mod n.
For a;,1 we have two cases:
Case a; < b;: Here we have a;,1 = 2a;. So

Ajy1 = 24,
=2.2"g modn

=2l mod n

Case a; > b;: In this case we have a;,1 = a; — b;. It follows

A1 =a;—b;
=a;,+n—>b; modn
=a;+a;+b;—b; modn
=2a; mod n
=2-2g modn

=2ty mod n
O

We will use these 4 invariants (a; > 0, b; > 0, a; +b; = n and
a; = 2'a mod n) to determine for which initial values a and b the loop
terminates. To do so we consider . Because 0 < a < n we know that

a

2 € (0,1). We look at the expansion of % in base 2.

Theorem 1.1. If the expansion of & is finite with k digits d; € {0,1}

diz_i

n

n i=1

then ay = 0 and the loop terminates after k steps.

*>Base case by = b > 0 holds by defini-
tion of b. Assume b; > 0. Again we have
two cases. If a; < b; then b; 1 = b; —a; >
0. If a; > b; then bH»l =2b; > 0.

3 Base case a9 = a > 0 holds by defini-
tion of a. Assume a; > 0. Again we have
two cases. If a; < b; then a;1 = 2a; > 0.
If aj; > b,‘ then aji1 = a; — hi > 0.



Proof. From

k .
4 = Zdl-Z‘l
no3
we get by multiplying both sides with 2¢n:

k .
25a=Y nd2""=0 modn
i=1

Together with invariant 1.4 we get

akEZk{IIEO mod n

and because a; > 0, by > 0, a; + b = n we know that 0 < g, < 1, so
it must be that a; = 0 and the loop terminates after at most k steps. To
show that the loop terminates after exactly k steps, we need to show
that a; > 0 for 0 < j < k. We will do this by finding a contradiction.
Assume there exists a j < k such that 4; = 0. Then it also holds that
2/a =0 mod n.

From

we get by multiplying both sides with 2/n:

. k . j . k .
Ya=) nd27' =Y ndi27'+ Y nd27'=0 modn
i=1 i=1 i=j+1

2ia =0 mod n, so 2/a = ngq for some q € Z. Then

i o k o
q= Zdl‘zjil + Z d; 27!
i=1 i=j+1
We have q € Z, 25:1 dl-Zf_i € Z, but Zi‘(:]url dl-Zj_i ¢ Z, because
d; € {0,1}. This is a contradiction.
O

We arrived at a neat result: if the binary expansion of 1 is finite
with k digits, then the loop terminates after k steps.

What can we say if the expansion is not finite but instead has a
repeating pattern with a prefix and a period (the only other option 4)
? For starters, we can use a contradiction similar to the earlier one to
prove that the loop does not terminate. Consider the infinite binary

expansion:
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_a_
a+b

€ Q. See below for
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o
Loy o
noi3

Assume there is a k for which gy = 0. Then by multiplying the
expansion with 251 we get:

k . o .
2a=Y nd2"+ Y nd2""=0 modn
i1 i=k+1

So for some g € Z such that 2fa = ng we have

k 0
q= Z diZk*i + Z diZk*"
i=1

i=k+1
The left side and the first sum on the right both belong to Z but
the second sum does not, which is a contradiction. This means, that
Vk : ap > 0 and the loop does not terminate.
At this point we will do a small digression and prove some theorems
about decimal expansion.

Theorem 1.2. Given an integer p > 1, the series

Zi

i=1 P
with d; € {0,1,...,p — 1} converges to a value x € [0,1].

Proof.
n n
- -1
Lysr it
i=1 = P
so the series is bounded and will converge. O

Theorem 1.3. For every x € [0, 1] there exists a decimal expansion with base
p > 1 such that

withd; € {0,1,...,p—1}.

Proof. We divide the interval [0, 1] into p intervals [i %] with0 <i <

p. Since [0,1] = U/, 1[1 1“} we know there exists at least one index i

with x € [l l“] We set d1 = i and subdivide [’ ’;1] into p segments
[é, %] Up 1 [dl 44 ];—21] X is in one of these subintervals and

we set dp to be the 1ndex of that subinterval and continue in this man-
ner recursively defining all d;. Because of the nested interval property
with monotone decreasing length this converges to x.

Another way to prove it is like this:

The case where x = 0 is trivial (just set all d; = 0).



For x > 0 we have:

The set Ny = {k € INp : % < x} is a set of non-negative integers
strictly bounded above by p, so it has a largest element and we set
d; = max(Ny). Then x < leH (otherwise di +1 € Ny and d; wouldn’t
be the largest element of Nj). We therefore have

é <x< di+1
p p

We continue and look at N, = {k € Ny : d?l + % < x}. Again the
set Nj is strictly bounded above by p and we set d = max(N,). Again
we have:

d d d dr +1
% oty Bt

p p P P

Having defined dy,dy, . . . d,,_1 we can recursively define d,, = max(Nj,)

with

"d |k
Ny ={keNg: ) —+— <x}
A

Again p ¢ Ny, so the definition is valid and the following inequali-
ties hold:

"od "l d,+1
Y <x<) S+
i-1P i=1 p
We define u, = Y 4 d—;?, Uy = Z?;ll d—; + d’;ﬁl and w, = d’;’;ﬁ:l. Uy

is monotone increasing and bounded above, so it converges. For v, we
have

Un 2 Upy1

n—1 g, n )
ey diydtl, ydiy deat]

b pz P” = Pi pn+1
dn +1 dn dnJrl +1

= p" 2 ﬁ pn-i-l
1 dpi1+1

= W = pn+1

<:>p2dn+l+l

which holds by definition of d,, 1. So v, is monotone decreasing
and bounded below, therefore it converges too. w, converges to zero
and v, = u,_1 + wy, therefore

limy, eolly = limy 00Uy = X
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Theorem 1.4. Given is base p > 1 and
x—Z—

with d; € {0,1,...,p —1} and d, # 0. Then there are two base p
expansions of x.

Proof. The first expansion is x = Y ;> = pl i with d; = 0 for i > n. For the
second expansion we define the following series:

7d -1 > -1
A A AP Y

P i=n+1 pl

and prove that y = x. Then the two expansions are 0.d1d> . .. d,00000. ..

and 0.dydy ... (dy —1)(p—1)(p—D(p—1)...
To prove that y = x we look at

So y becomes

O

Theorem 1.5. If we disallow series with infinitely repeated (p — 1) tail, any
x € [0,1] has a unique decimal expansion in base p.

Proof. Assume two decimal expansions where both agree until index
k —1 and index k is the first index where they differ.

f*’i G
1;? pk :kzp
k*ld f )
=) =+ +

I L Mlém

Without loss of generality assume ¢, < f.



We have
y_x:’fﬂ+&+ i fi e i &
S P ik P iOr p i1 P!
fk_ek o f ol e:
e, P AP
p i=k+1 P =k P
fre— ek 1 & fidi o Chkpi
p PkE;V E;V

We denote u = )24 % and v = Y72, % Since we disallowed
repeated (p — 1) tail, we know that 0 < u < 1and 0 < v < 1, so
—1 < u—19v<1. It follows that

o<hizazl o fizatl
p pk

and x # y. O

Theorem 1.6. x € [0,1] N Q if and only if its decimal expansion in base
p > 1 is either finite or has a prefix (of length zero or more) and an infinitely
repeating non-zero length pattern tail.

Proof.

(=):

x € [0,1] N Q, so there exist m,n € N with m < nand x = . We
basically do the long division and present an expansion that will have
a repeating tail (if it isn’t finite). Let k € IN be the smallest integer such

that mp* > n and we do division:

mpk:nq—i-r

with 0 < r < n. Because k is the smallest integer with mp* > n we
have np > mp* (otherwise k — 1 would be a smaller integer satisfying
the same). That means np > ng +r and thus p > "2 > 4. This gives
us k — 1 zeros and the first non-zero digit in the expansion, namely g:

We repeat this process with 7. There are only 1 possible remainders,
so if it doesn’t end with a remainder of zero it must eventually get
a previously seen remainder and so the expansion will repeat itself.
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This creates an expansion with an infinitely repeating non-zero length
pattern tail. Since it isn’t finite, we can disallow repeating (p — 1)
and from the expansion uniqueness theorem we have proved the (=)
direction.

(<)

This direction is easy. If it is a finite sum, then it is rational since
all the parts are rational. If it is infinite repeating we can eliminate the
non-repeating prefix since it is finite and rational and shift the rest. So
we can concentrate on a repeating series with a period of length k — 1:

o 1k—1
??@

J
p

»‘H

d‘ [}
7]
1P ;

]:
k— , 00
x4 L

which is a rational expression. O

We return to our problem. We now know the expansion of 77 is
repeating a period if it doesn’t terminate. We will show that the loop
also repeats a period of the same length.

Theorem 1.7. If & has an expansion in base p which repeats a period of k
digits infinitely, then
k —
ap*=a mod n

Proof. We have & = 0.dyd»d3 .. .d; which means

S = 0.dydyds ... dy
k k k
d 1 &d 1 &4
— YA (Lo (S
z; pz Pk z; pz Pk i:zlpl
kdl‘ 1a
=Y ity
z:lp prn

We multiply both sides by np* and get



k

apt = Y. nd;p*= +a
i=1

which proves the theorem.

O

Theorem 1.8. If & has an expansion in base p which has a prefix and then

repeats a period of k digits infinitely, then

ap* =a mod n

Proof. We have | = 0.ejeze3...e;d1dad3 . . . di which means

% = 0.616263 ce eld1d2d3 e dk

Zl;e"+1(0ddd &)
=) — + —(0.d1dads ... dy
i:lpl Pl

This means

ap! =Y p' e —
P lel P L= 0.d1dpds . .. dk

We can then apply the previous theorem to a new a’
Y/, p'~e;n and see that

But @’ = ap! mod n, so
ap™!' = ap' mod n

orap* =a mod n.

1

= ap’ —

O

We combine this last result with the invariant 1.4 to see that a;,y =

a; and the loop repeats values with period k.
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