
Two decks of cards

Inclusion–exclusion principle and the number of derangements
are the topics of the problem 1 in this section. 1 Probability question on page ix in Pref-

ace of M. Beck and R. Geoghegan. The
Art of Proof: Basic Training for Deeper
Mathematics. Undergraduate Texts in
Mathematics. Springer New York, 2010.
ISBN 9781441970237

Problem

A deck of n different cards is shuffled and laid on the table by
your left hand, face down. An identical deck of cards, indepen-
dently shuffled, is laid at your right hand, also face down. You
start turning up cards at the same rate with both hands, first
the top card from both decks, then the next-to-top cards from
both decks, and so on. What is the probability that you will
simultaneously turn up identical cards from the two decks?

The shuffling implies equally likely outcomes so the probability is
the number of outcomes with an identical card turning up divided by
the number of total outcomes. The number of total outcomes is (n!)2

since there are n! possible shuffling outcomes of one deck (the number
of permutations of Sn).

The set of outcomes where an identical card turns up seems harder
to count. It feels easier to count its complement: the number of out-
comes when no identical card comes up. There are n! ways in which
the first deck is shuffled. For a given permutation π ∈ Sn of the first
deck we need to count all the permutations ρ ∈ Sn of the second deck
for which ∀i : 1 ≤ i ≤ n : ρ(i) ̸= π(i). Let Aπ = {ρ ∈ Sn : ∀i : 1 ≤ i ≤
n : ρ(i) ̸= π(i)}.

Let Dn = {τ ∈ Sn : ∀i : 1 ≤ i ≤ n : τ(i) ̸= i}. A permutations from
Dn is called a derangement. We introduce the notation !n = |Dn| for
the number of derangements.

Lemma 1.1.
|Aπ | = |Dn|

Proof. We need to present a bijection f : Dn → Aπ . We define f (τ) =
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π ◦ τ. First we verify that f is well-defined, i.e. f (τ) ∈ Aπ .

∀i : 1 ≤ i ≤ n :

f (τ)(i) = (π ◦ τ)(i)

= π(τ(i)) ̸= π(i)

because τ(i) ̸= i

Next we show that f is injective: f (τ1) = f (τ2) implies π ◦ τ1 = π ◦ τ2.
Sn is a group, so τ1 = τ2. Also f is surjective because: ∀ρ ∈ Aπ

we have π−1 ◦ ρ ∈ Dn because ρ(i) ̸= π(i) implies (π−1 ◦ ρ)(i) ̸= i.
f (π−1 ◦ ρ) = ρ.

From lemma 1.1 we now know that the number of outcomes when
no identical card comes up is !n · n! and the probability requested in
the problem is

P = 1 − !n · n!
n!2

= 1 − !n
n!

What remains is to compute !n. Let us look again at the set of
derangements: Dn = {τ ∈ Sn : ∀i : 1 ≤ i ≤ n : τ(i) ̸= i}. It sometimes
helps to consider the complement of a set when we have to compute
its cardinality. To more precisely define the complement of Dn we will
define the following subsets of Sn: Fn(k) = {τ ∈ Sn : τ(k) = k}. We
then have:

Dn = Sn \ (
n⋃

k=1

Fn(k))

For any given k ∈ {1, 2, . . . , n} we have |Fn(k)| = (n − 1)! (see foot-
note2 why), so 2 One position is fixed and the rest be-

have like a permutation in Sn−1.

|(
n⋃

k=1

Fn(k))| = n(n − 1)! = n!

But this can’t be right. It would mean that |Dn| = 0 and Dn = ∅.
But cleary Dn is not empty, for example the permutation:

ρ(i) =

i + 1 i < n

1 i = n

is a member of Dn. The problem here is that the Fn(k) are not disjoint,
so calculating the size of their union needs to be done more carefully.
It turns out that this is a perfect use case of the inclusion-exclusion
principle.

The inclusion-exclusion principle provides a method of counting
the size of the union of subsets that are not necessarily disjoint.

We illustrate the method on a simple example of three sets A, B, C
as in Figure 1.1. We would like to compute |A∪ B∪C|. The expression
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|A|+ |B|+ |C| would count the elements from (A ∩ B) \ (A ∩ B ∩ C),
(A ∩ C) \ (A ∩ B ∩ C) and (B ∩ C) \ (A ∩ B ∩ C) twice and elements
from A ∩ B ∩ C three times. So |A ∪ B ∪ C| < |A|+ |B|+ |C|. To com-
pensate we subtract the pairwise intersection sizes and our expression
becomes |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|. This is almost
right except for A ∩ B ∩ C which we lost in the adjustment (it was
counted three times and then subtracted three times). We add it back
and get

|A∪ B∪C| = |A|+ |B|+ |C| − |A∩ B| − |A∩C| − |B∩C|+ |A∩ B∩C|

A

B

C

Figure 1.1: Union of three not necessar-
ily disjoint sets.

In general, if we want to count | ∪n
i=1 Ai| we start with ∑n

i=1 |Ai|
which includes pairwise intersections Ai ∩ Aj twice, so we exclude
with −(∑n

1≤i<j≤n |Ai ∩ Aj|). But this excludes the triple intersections
so we include those with ∑n

1≤i<j<k≤n |Ai ∩ Aj ∩ Ak|. This overcounts
quadruple intersections which we exclude etc. We stop with the exclu-
sion or inclusion of the intersection of all Ai.

Theorem 1.2. Inclusion-exclusion principle.
Given n sets Aj, 1 ≤ j ≤ n

|
n⋃

j=1

Aj| =
n

∑
k=1

(−1)k+1( ∑
J⊆Nn , |J|=k

|
⋂
j∈J

Aj|)

Proof. We are going to prove the theorem by tracing the contributions
of one element a ∈ ⋃n

j=1 Aj to the left-hand side and right-hand side
of the equation. On the left it will be 1 since this is the union of sets
and not multisets. For the right-hand side, we observe that there is a
non-empty index set I ⊆ {1, 2, . . . , n} such that ∀i ∈ I : a ∈ Ai. The
element a will contribute ±1 from all the set intersections in which it
appears, so all the terms in the sum where index set J satisfies J ⊆ I
(since these are intersections, a won’t appear in any of the other terms).
The hope is that the sum of all these ±1 will be 1.

Let m = |I|. Then any index set J with size greater than m cannot
be a subset of I, so the running index k of the sum only needs to go to
m. For each k there are (m

k ) index subsets J of size k from I. In each a
weighs in with 1, so the contributions of a add up to:

m

∑
k=1

(−1)k+1
(

m
k

)

We add and subtract (m
0 ) to this sum and get
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m

∑
k=1

(−1)k+1
(

m
k

)
=

(
m
0

)
−

(
m
0

)
+

m

∑
k=1

(−1)k+1
(

m
k

)
=

(
m
0

)
−

m

∑
k=0

(−1)k+1
(

m
k

)
=

(
m
0

)
+

m

∑
k=0

(−1)k
(

m
k

)
=

(
m
0

)
+

m

∑
k=0

1m−k(−1)k
(

m
k

)
=

(
m
0

)
+ (1 − 1)m

=

(
m
0

)
= 1

On both sides of the equation in the theorem an arbitrary element
a of the union of the sets contributes 1. This proves the inclusion-
exclusion principle.

Let us return to computing derangements. We now know how to
compute |(⋃n

k=1 Fn(k))| by using the inclusion-exclusion principle:

|(
n⋃

k=1

Fn(k))| =
n

∑
k=1

(−1)k+1( ∑
J⊆Nn , |J|=k

|
⋂
j∈J

Fn(j)|)

For a given index set J ⊆ Nn, |J| = k the intersection contains all
the permutations that are fixed in the positions j ∈ J, so the size of this
intersection is (n − k)!. There are (n

k) such index sets J of size k, so our
expression becomes:

|(
n⋃

k=1

Fn(k))| =
n

∑
k=1

(−1)k+1
(

n
k

)
(n − k)!

We then have

!n = n! −
n

∑
k=1

(−1)k+1
(

n
k

)
(n − k)!

= n! +
n

∑
k=1

(−1)k
(

n
k

)
(n − k)!

=
n

∑
k=0

(−1)k
(

n
k

)
(n − k)!

The probability of turning up identical cards from the two decks is
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1 − !n
n!

= 1 −
n

∑
k=0

(−1)k
(

n
k

)
(n − k)!

n!

= 1 −
n

∑
k=0

(−1)k n!
k!(n − k)!

(n − k)!
n!

= 1 −
n

∑
k=0

(−1)k

k!

This probability converges fairly quickly to approximatively 0.7 so
you have a 0.7 chance of turning up identical cards from the two decks.
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