
Two algebraic delights

Algebraic representations are the topic of this note. Transform-
ing a structure into a corresponding algebraic representation enables
easier reasoning and unlocks simpler proofs.

We are going to explore two examples of transformations that I
call little algebraic delights. They allow reasoning with ordinary al-
gebraic operations on mathematical objects that are not algebraic at
first glance. The first example will use indicator functions1 to prove 1 D. Pollard. A User’s Guide to Mea-

sure Theoretic Probability. Cambridge
Series in Statistical and Probabilistic
Mathematics. Cambridge University
Press, 2002. ISBN 9780521002899. URL
https://books.google.com/books?id=

B7Ch-c2G21MC

set identities and the second example will use formal languages2 to

2 Ö. Eğecioğlu and A.M. Garsia. Lessons
in Enumerative Combinatorics. Gradu-
ate Texts in Mathematics. Springer In-
ternational Publishing, 2021. ISBN
9783030712501. URL https://books.

google.com/books?id=5BMuEAAAQBAJ

count combinatorial objects.

Indicator functions of sets

When you deal with sets, you usually have to do Boolean algebra.
Proving identities of expressions of set operations can become really
tedious. Let’s say we want to prove that the symmetric difference is
associative, so given three sets A, B, C we have

(A△B)△C = A△(B△C)

where the symmetric difference is defined as

A△B = (A \ B) ∪ (B \ A)

The usual approach of proving is to show that the set on the left
hand side (A△B)△C is a subset of the right hand side A△(B△C) and
vice versa, by tediously following an x ∈ (A△B)△C and showing that
it is also in A△(B△C) and then the reverse.

Instead of that approach let’s try something different. Let U = A ∪ B ∪ C
be the union of all the sets participating in the identity we want to
prove (our universe). We define an indicator function IS : U → {0, 1}
for a subset S ⊆ U of this universe as:

IS(x) =

1 : x ∈ S

0 : x /∈ S

https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=5BMuEAAAQBAJ

2 uwe hoffmann

We can combine indicator functions with arithmetic operations in
a point-wise manner in the field Z2. It’s also clear that sets are in a
one-to-one correspondence with their indicator function.

Let’s look at the indicator functions of some set operations3: 3 These identities are easy to prove. Just
remember, the operations are modulo
two and are point-wise, so have to hold
for every x in the universe. For exam-
ple, to prove the last identity IS△T(x) =
IS(x) + IT(x) we can observe that the
symmetric difference shouldn’t include
the intersection of the two sets, ie when
both indicator functions are equal to one.
The sum of 1 + 1 is zero modulo two
so that works out, etc... Also remember
−1 = 1 in Z2.

∀x ∈ U :

IS∪T(x) = max(IS(x), IT(x))

IS∩T(x) = IS(x) · IT(x)

ISc(x) = 1 − IS(x)

IS\T(x) = IS(x) · (1 − IT(x))

IS△T(x) = IS(x) + IT(x) = IS(x)− IT(x)

Let’s omit the x in these point-wise expressions:

IS∪T = max(IS, IT)

IS∩T = IS · IT

ISc = 1 − IS

IS\T = IS · (1 − IT)

IS△T = IS + IT = IS − IT

Since we agreed that we will work with the indicator functions of
the sets, we could just drop the I from the notation4: 4 To parse expressions where we

dropped the symbol I, we have to group
set operations and imagine an I in
front of them, ie set operations have
grouping precedent over arithmetic
operations. For example S ∪ T · V means
the point-wise multiplication IS∪T · IV .

S ∪ T = max(S, T)

S ∩ T = S · T

Sc = 1 − S

S \ T = S · (1 − T)

S△T = S + T = S − T

Given the indicator function equivalent of the symmetric differ-
ence, our initial (A△B)△C = A△(B△C) becomes the almost trivial
(A + B) + C = A + (B + C).

The expression for the union has max which is sometimes conve-
nient but sometimes gets in the way of point-wise arithmetic. But we
can get rid of it by observing that the union is the symmetric difference
plus the intersection:

S ∪ T = S△T + S · T = S + T + S · T

Let’s deploy our new-found powers to something more complicated
and try to prove that

math notes - two algebraic delights 3

(
n⋂

i=1

Ai)△(
n⋂

i=1

Bi) ⊆
n⋃

i=1

(Ai△Bi)

Two things before we start: our universe expanded to U = (
⋃n

i=1 Ai) ∪ (
⋃n

i=1 Bi)

and we have for subsets S, T ⊆ U :

S ⊆ T ⇔ ∀x ∈ U : IS(x) ≤ IT(x)

Given that inequality and the fact that the range of indicator func-
tions is {0, 1}, when the right-hand side is one then the inequality is
trivially true. The only interesting case is when the right-hand side is
zero. We use the max expression for union and have

n⋃
i=1

(Ai△Bi) = maxn
i=1(Ai − Bi)

This max can only be zero iff all Ai = Bi. But in that case we also
have the left-hand side zero because the left-hand side is

(
n⋂

i=1

Ai)△(
n⋂

i=1

Bi) =
n

∏
i=1

Ai −
n

∏
i=1

Bi

which concludes our proof.

Formal Languages to count combinatorial objects

We will do a very quick, (ahem) informal introduction to Formal Lan-
guages5. We start with an alphabet A which is an ordered set of sym- 5 This should be very familiar for all of

us computer science majors.bols. We want it ordered so that we can do lexicographic ordering of
words from that alphabet. Speaking of words: they are sequences of
symbols from the alphabet. Concatenation of two words w1 and w2

is denoted by w1 · w2 and defined as you would expect. The empty
word ϵ has length zero and is the neutral element of concatenation.
A word w2 is a prefix of a word w1 iff there is a word w3 such that
w1 = w2 · w3. The set of all words (including the empty word ϵ) from
alphabet A is denoted A∗ and the set of all words excluding ϵ is A+.
A subset L ⊆ A∗ is called a language.

We have a couple of ways to form new languages from given ones.
One way is concatenation. Given L1,L2:

L1 · L2 = {w1 · w2 : w1 ∈ L1, w2 ∈ L2}

The other way is the set union L1 ∪ L2 which becomes more inter-
esting when L1 and L2 are disjoint.

So far so good. Now comes the cool stuff. Given a language L we
define its listing series as:

4 uwe hoffmann

sL = ∑
w∈L

w

Some notes on this notation: This is a formal sum and should not
be thought of as the normal addition of numbers. The name listing
series hints at its special nature: it lists out the words of a language
in a chain. Using the plus symbol as the chain separator (as opposed
to say the comma) might be confusing in the beginning but it will
pay off later when it is combined with the multiplication symbol used
for concatenation. The words in the sum are usually listed out in
lexicographic order. The usefulness of the listing series will become
apparent when we relate it to concatenation. Let’s look at an example:
L1 = {a, b}:

sL = aa + ab + ba + bb

We take a second language L2 = {c} and now list out the concatena-
tion (the listing operator s has lower precedent than the concatenation
operator, saving us round braces):

sL1 · L2 = aac + abc + bac + bbc

= (aa + ab + ba + bb) · c

= (sL1) · (sL2)

Treating + and · in a strictly symbolic, algebraic way, it looks like ·
distributes over + and preserves the correct meaning of listing series
of the languages involved in the expression. Note that unlike with
the multiplication of numbers, concatenation is not commutative, so
ab and ba are different and aa + ab + ba + bb is not aa + 2ab + bb (that
2 in the last expression doesn’t even make sense). We have to be care-
ful not to cross the line and conflate the operations with the familiar
numeric ones, but if we are careful we can now manipulate languages
algebraically as if they were finite sums of terms (or even infinite sums
as we will see).

Before we can put this to good use, let us also introduce another
notational convenience: exponentiation. We have seen that ab and ba
are not the same, also aab and baa are different. But as a convenience
we can abbreviate aa to a2 and in general a word aa . . . a of length n
formed with one single symbol a as an. That way aab and baa can be
written a2b and ba2 respectively.

Exponentiation can be expanded to languages: Ln is the language
formed by concatenating L with itself n times. We also agree that
L0 = {ϵ}.

One last thing before we start: what should the placeholder symbol
for the empty word in a listing series be? Well, since the empty word

math notes - two algebraic delights 5

is the neutral element of concatenation and we use "multiplication" as
our concatenation operator, it is befitting to use 1 for the empty word
and this also fits with distribution of concatenation over listing series
and our "exponentiation". For a neat example: consider A = {a} and
list out A∗(purely symbolic6): 6 With a wink towards calculus, we agree

that 1
1−a symbolizes the listing series of

A∗.
sA∗ = 1 + a + a2 + a3 + . . . =

∞

∑
i=0

ai =
1

1 − a

We’re ready to do some interesting combinatorics. Until now we
used the subscript on a language symbol like L1 just to make it an
individual and distinguish it from another language L2 in this expo-
sition. From now on we will give it meaning: given a fixed alphabet
we say Ln is the language of all the words with length n from that
alphabet.

It’s not that hard to prove that when n = p + q with n, p, q ∈ N then
(over the same alphabet):

Ln = Lp · Lq

sLn = (sLp) · (sLq)

This is really powerful because it is a rich source of recursions
for both the listing series generation and for counting the number of
words in the language.

Consider the alphabet of two symbols: A = {a, b}. Let’s list out
some languages of different lengths from this alphabet:

sL0 = 1

sL1 = a + b

sL2 = aa + ab + ba + bb

sL3 = aaa + aab + aba + baa + abb + bab + bba + bbb

. . .

We observe that sLn = s(a · Ln−1) + s(b · Ln−1) and if Ln−1 is listed
in lexicographic order, then this recursion even preserves the lexico-
graphic order. In essence, it gives us an algorithm to generate words
of a given length in lexicographic order7. 7 It also lets us count the number of

words in Ln: if bn = |Ln| is the number
of words in Ln, then it satisfies the recur-
sion: bn = 2bn−1 and we know b0 = 1.
So no surprise here: bn = 2n.

Let us expand the language subscript notation with even more mean-
ing. Same two-symbol alphabet A = {a, b}, and now Ln,k means lan-
guage of words of length n with exactly k b’s in them. Then8:

8 If a word of length n with exactly k b’s
starts with an a then it must be followed
by a word of length n − 1 with k b’s. If
on the other hand it starts with a b then
it must be followed by a word of length
n − 1 with k − 1 b’s.

sLn,k = (s a · Ln−1,k) · (s b · Ln−1,k−1)

If we denote the size of language Ln,k with Cn,k = |Ln,k| then we
have the recursion:

6 uwe hoffmann

(0, 0)

(n, m)

(0, m)

(n, 0) Figure 1.1: Lower left corner of grid is
(0, 0) and upper right corner is (n, m).
Paths are going either up North or right
East, always along an edge in the grid.

Cn,k = Cn−1,k + Cn−1,k−1

and the astute reader recognizes this as the recursion of the bino-
mial coefficients and the Pascal triangle.

If we find a one-to-one correspondence between the combinatorial
objects that we want to reason about and words in a language, then
we can deploy this formal language machinery to generate the objects
(using listing series) and also count them.

As an example of such a correspondence, consider a n × m lattice
grid and East/North lattice paths on that grid.

How many such paths are there that go from (0, 0) to (n, m) ? We
can make a one-to-one correspondence from the set of possible paths
to a language with the two-symbol alphabet {E, N} (E for East, N for
North). Each path has to have n + m segments with n North-going
segments and m East-going segments. The corresponding language L
over the alphabet A = {E, N} consists of words of length n + m with
exactly n N’s (and therefore m E’s). We recognize again the binomial
coefficient and have the number of paths

|L| = Cn+m,n

This was a simple example but the general idea stays the same: find
a bijection between the combinatorial objects and words in a language
over some alphabet and then switch to algebraic series manipulation
of the words. For example, if it is a 3-dimensional lattice grid, then
we expand the alphabet to three symbols and proceed. Sometimes the
language used in the correspondence has very interesting restrictions
such as in a two-symbol alphabet language where the number of a’s
and b’s has to be equal and any prefix of the word has to have at least
as many a’s as b’s9. 9 Words from such a language are called

Dyck words. These words have corre-
spondence to many combinatorial ob-
jects.

Bibliography

Ö. Eğecioğlu and A.M. Garsia. Lessons in Enumerative Combinatorics.
Graduate Texts in Mathematics. Springer International Publishing,
2021. ISBN 9783030712501. URL https://books.google.com/books?

id=5BMuEAAAQBAJ.

D. Pollard. A User’s Guide to Measure Theoretic Probability. Cam-
bridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 2002. ISBN 9780521002899. URL https:

//books.google.com/books?id=B7Ch-c2G21MC.

https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=5BMuEAAAQBAJ
https://books.google.com/books?id=B7Ch-c2G21MC
https://books.google.com/books?id=B7Ch-c2G21MC

	Bibliography

