
Twelve Coins

Coin weighings are the topics of the problem 1 in this note. 1 Ethan Canin. The Palace Thief Stories,
chapter Batorsag and Szerelem, page 87.
Random House New York, 1994

or
Problem 1-111. on page 47 in N. Loehr.
Combinatorics. Discrete Mathematics and
Its Applications. CRC Press, 2017. ISBN
9781498780278

Problem

Of twelve coins, one is counterfeit and weighs either more or
less than all the others. The others weigh the same. With a
balance scale, on which one side may be weighed against the
other, you are to use only three weighings to determine the
counterfeit and its type (lighter or heavier).

We first present a hand-tailored solution for twelve coins.

There are many variations of coin
weighing problems. Some require
identifying the type of the counterfeit
(lighter or heavier), some don’t. Some
have more than one scale, some have
more than one counterfeit, some don’t
state the existence of the counterfeit,
some allow using scale weights or a
known genuine coin. The Wikipedia
page https://en.wikipedia.org/wiki/

Balance_puzzle has a good overview. In
this section we always want to find the
counterfeit coin (we know there is ex-
actly one counterfeit of unknown type)
and its type and our scale is a balance
scale with coins on both sides.

Let M be the set of coins, |M| = 12. We have weighing function

w : M→ {a, b}, a ̸= b, a, b ∈ R+.

We have |{c ∈ M : w(c) = a}| = 11 and |{c ∈ M : w(c) = b}| = 1. We
are asked to find c f ∈ M with w(c f ) = b in three weighings.

For a subset S ⊆ M we define

w(S) = ∑
c∈S

w(c).

Let’s partition M into 3 subsets S0, S1, S2

S0 ∪ S1 ∪ S2 = M
∀ 0 ≤ i < 3 : |Si| = 4
∀ 0 ≤ i < j < 3 : Si ∩ Sj = ∅

At this point we consume the first weighing:

1st weighing: compare w(S1) with w(S2)

Case w(S1) = w(S2)

In this case c f ∈ S0. We partition S0 into S0 = S1
0 ∪ S3

0 with |S1
0| = 1

and |S3
0| = 3. We also consider S3

1, a subset of S1 with |S3
1| = 3. We

consume the second weighing:

https://en.wikipedia.org/wiki/Balance_puzzle
https://en.wikipedia.org/wiki/Balance_puzzle
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2nd weighing: compare w(S3
0) with w(S3

1)

subcase 1: w(S3
0) = w(S3

1). In this subcase c f ∈ S1
0 and we’re done

after just two weighings.

subcase 2: w(S3
0) > w(S3

1). In this subcase S3
0 has the counterfeit coin

and b > a. We consume the third weighing: Let S3
0 = {c1, c2, c3}.

We weigh c1 against c2.

3rd weighing: compare w(c1) with w(c2)

If w(c1) = w(c2) then c f = c3, if w(c1) > w(c2) then c f = c1.

case 3: w(S3
0) < w(S3

1). In this case S3
0 has the counterfeit coin and

b < a. Analog to previous case (replace heavy with light).

Case w(S1) > w(S2)

In this case the counterfeit coin is either in S1 or in S2.

Freeman J. Dyson. https://en.

wikipedia.org/wiki/Freeman_Dyson

We consider 4 subsets:

S3
0 ⊂ S0, |S3

0| = 3,

A with three coins from S1,

B with one coin from S2,

C with remaining coin from S1: C = S1 \ A.

We consume the second weighing:

2nd weighing: compare w(S3
0 ∪ C) with w(A ∪ B)

subcase 1: w(S3
0 ∪ C) = w(A ∪ B). In this subcase c f ∈ S2 \ B and be-

cause w(S1) > w(S2) we know that b < a. Let {c1, c2, c3} = S2 \ B
and we consume third weighing:

3rd weighing: compare w(c1) with w(c2)

If w(c1) = w(c2) then c f = c3, if w(c1) > w(c2) then c f = c2.

subcase 2: w(S3
0 ∪ C) < w(A ∪ B). Assume c f ∈ C ⊂ S1. That would

mean that b > a because w(S1) > w(S2) but that contradicts with
w(S3

0 ∪ C) = 3a + b < w(A ∪ B) = 4a. Assume c f ∈ B ⊂ S2. That
would mean that b < a because w(S1) > w(S2) but that contradicts
also with w(S3

0 ∪C) = 4a < w(A∪ B) = 3a + b. The only possibility
remaining is c f ∈ A. We use the third weighing analog to the pre-
vious case to find the counterfeit coin in a three-coin set using the
fact that b > a.

https://en.wikipedia.org/wiki/Freeman_Dyson
https://en.wikipedia.org/wiki/Freeman_Dyson
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subcase 3: w(S3
0 ∪ C) > w(A ∪ B). In this case the counterfeit coin can

be either in B or in C. It cannot be in A according to a reasoning
analog to previous case that leads to a contradiction. Both B and
C only have one coin each so compare the coin in B with any good
coin to find the counterfeit coin in this third weighing.

This covers all the cases and we’re done.
The solution brings up questions: how would it work for 13 coins

and in general, how many weighings would be necessary for N coins.
To answer these questions we present an elegant general solution2 in- 2 Freeman J. Dyson. Note 1931-The prob-

lem of the pennies. Math. Gaz., 30:231–
234, 1946

We follow an exposition of this solution
by G. Shestopal.

vented by Freeman J. Dyson.
In the hand-tailored solution for twelve coins we kept seeing a

partition of coin sets into 3 subsets, two equally sized subsets that
were weighed against each other and one subset that didn’t partici-
pate in the current weighing. Depending on the result of the weighing
and prior information from previous weighings we could narrow the
search. Each weighing seems to contribute roughly three pieces of
"information". A sequence of n weighings would generate 3n amount
of information that should somehow map to finding the counterfeit
amongst N coins. This is not strictly accurate3 because information de- 3 The hand-tailored solution is an adap-

tive solution: later weighings are set up
according to the result of earlier weigh-
ings. Freeman J. Dyson’s general so-
lution is a non-adaptive solution if the
number of coins is divisible by three:
all the weighings are pre-determined re-
gardless of their outcome.

duced from weighings uses prior information from weighings before
and the narrowing doesn’t completely discard sets of coins but instead
uses them as scale weights with known type (ie none are counterfeits).
But this 3n observation does suggest 3n ≈ N and point to the objective
of finding a bijection between ternary codewords of length n and a set
of size N.

Lets first consider N coins with N of the form N = 1
2 (3

n − 3) for
some n ≥ 2. We will show how to find the counterfeit and its type in
n weighings4. 4 Notice that N = 12 fits this form: 12 =

1
2 (3

3 − 3), so n = 3 weighings.The set of codewords of length n from alphabet {0, 1, 2} has size
3n. We discard the three codewords with all digits equal: 0 . . . 0, 1 . . . 1
and 2 . . . 2. The set W of the remaining codewords has size 3n − 3. We
split5 W into 3n−3

2 pairs of complements: 5 The expression 3n − 3 is the subtraction
of two odd numbers, so it is even.

Definition 1.1. Two codewords a1a2 . . . an ∈W and b1b2 . . . bn ∈W are
complements of each other if

∀i : 1 ≤ i ≤ n : ai + bi = 2

We use the notation ac
1ac

2 . . . ac
n for the complement of a1a2 . . . an.

Definition 1.2. The function δ : W 7→ {0, 1, 2}2 finds the first two digits
of a codeword that differ6 6 The function δ is well-defined because

0 . . . 0 /∈W, 1 . . . 1 /∈W and 2 . . . 2 /∈W.
δ(a1a2 . . . an) = aiai+1 such that ∀1 ≤ j < i : aj = ai and ai ̸= ai+1

Definition 1.3. Codeword w ∈ W is called a left codeword if δ(w) ∈
{10, 21, 02} otherwise it is called a right codeword.
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It is easy to see that the set of left codewords and the set of right
codewords do not overlap and that if a codeword is a left codeword
its complement is a right codeword7. A good mnemonic of left and 7 For example let’s prove that if

a1a2 . . . an is a right codeword then
ac

1ac
2 . . . ac

n is a left codeword. If aj = aj+1
then ac

j = ac
j+1 and likewise if aj ̸= aj+1

then ac
j ̸= ac

j+1. So the index of the first
two digits that differ is the same for
a codeword and its complement. The
complements of {01, 12, 20} are exactly
{21, 10, 02} so the complement of a
right codeword is a left codeword with
differing digits at the same index as the
right codeword.

right is this: 0 → 1 → 2 moves digits to the right so {01, 12, 20} cor-
responds to the right codewords and the right direction. Conversely
0 ← 1 ← 2 moves digits to the left so {10, 21, 02} corresponds to the
left codewords and the left direction.

To summarize we now have 3n−3
2 pairs of codewords from W such

that each pair has a left codeword and a right codeword that are com-
plements of each other. Let P be the set of these pairs. We have
N = 3n−3

2 coins. Let C be the set of coins. We pick an arbitrary bi-
jection µ : C 7→ P that assigns a pair to a coin, marking it with a left
and a right codeword8. 8 For example when N = 12 we could

pick µ like this:

coin left codeword right codeword
c1 211 011
c2 100 122
c3 022 200
c4 212 010
c5 101 121
c6 020 202
c7 210 012
c8 102 120
c9 021 201
c10 221 001
c11 110 112
c12 002 220

C3(2) means the subset of coins for
which the third digit in the right code-
word is 2. In this example C3(2) =
{c2, c6, c7, c11}.

We adopt the notation µ(c).right to denote the right codeword as-
signed to coin c ∈ C and µ(c).le f t the left codeword. Also µ(c).right(i)
denotes the i-th digit of the right codeword, so if µ(c).right = a1a2 . . . an

then µ(c).right(i) = ai. Analog µ(c).le f t(i) for the i-th digit of the left
codeword assigned to coin c.

We define ∀i : 1 ≤ i ≤ n and ∀d : 0 ≤ d ≤ 2 the subsets Ci(d) ⊂ C
with

Ci(d) = {c ∈ C : µ(c).right(i) = d}

It is easy to see that C = Ci(0) ∪ Ci(1) ∪ Ci(2) for each 1 ≤ i ≤ n
and that Ci(0) ∩ Ci(1) = Ci(0) ∩ Ci(2) = Ci(1) ∩ Ci(2) = ∅, so Ci(0),
Ci(1) and Ci(2) partition C.

Now we execute n weighings. For the i-th weighing we place the
coins from Ci(0) on the left pan of the scale and the coins from Ci(2) on
the right pan of the scale. We capture the n weighings in a codeword
x1x2 . . . xn ∈ W: if in the i-th weighing the left pan sinks, then xi = 0,
if the weighing is balanced then xi = 1 and if the right pan sinks then
xi = 2.

We claim that the weighing codeword x1x2 . . . xn will be either the
left or the right marker codeword of the counterfeit depending whether
the counterfeit is lighter or heavier and prove the following theorem:

Theorem 1.4. Let x1x2 . . . xn be the result of the n weighings and let c f ∈ C
be the counterfeit coin. Then µ(c f ).right = x1x2 . . . xn if c f is heavier and
µ(c f ).le f t = x1x2 . . . xn if c f is lighter.

Proof. Assume the counterfeit c f is lighter than the other coins (we
deal with the case of c f heavier afterwards).

There are three cases for the i-th weighing:
Case 1.(lighter) The scale is balanced, so xi = 1. This means that

c f does not participate in the i-th weighing9: c f /∈ Ci(0) and c f /∈ 9 Otherwise the scale wouldn’t be bal-
anced.Ci(2). Since Ci(0), Ci(1) and Ci(2) partition C, we have c f ∈ Ci(1). By
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definition this means that µ(c f ).right(i) = xi = 1 and since right and
left are complements it also means that µ(c f ).le f t(i) = xi = 1.

Case 2.(lighter) The left pan sinks, so xi = 0. Here c f participates
and c f ∈ Ci(2) because it is lighter so on the right pan. By defini-
tion this means that µ(c f ).right(i) = 2 and since µ(c f ).le f t(i) is the
complement it also means µ(c f ).le f t(i) = xi = 0.

Case 3.(lighter) The pan sinks, so xi = 2. In this case c f also par-
ticipates and c f ∈ Ci(0) because it is lighter so on the left pan. This
means µ(c f ).right(i) = 0 and by complement µ(c f ).le f t(i) = xi = 2.

For every i we have seen that µ(c f ).le f t(i) = xi, so µ(c f ).le f t =

x1x2 . . . xn.
Now assume c f is heavier. We proceed in analog fashion. There are

three cases for the i-th weighing:
Case 1.(heavier) The scale is balanced, so xi = 1. This means that c f

does not participate in the i-th weighing and we have c f ∈ Ci(1) and
µ(c f ).right(i) = xi = 1.

Case 2.(heavier) The left pan sinks, so xi = 0. Here c f partici-
pates and c f ∈ Ci(0) because it is heavier so on the left pan. Then
µ(c f ).right(i) = xi = 0.

Case 3.(heavier) The right pan sinks, so xi = 2. In this case c f also
participates and c f ∈ Ci(2) because it is heavier so on the right pan.
So µ(c f ).right(i) = xi = 2.

We see that for every i we have µ(c f ).right(i) = xi, so µ(c f ).right =
x1x2 . . . xn.

Theorem 1.4 shows that the n weighings detect the counterfeit coin
and its type if there are N = 3n−3

2 coins.
If N < 3n−3

2 we have to be more careful how we mark coins with
codewords10. 10 For example assume there are only ten

coins and we arbitrarily assign the fol-
lowing codeword pairs:

coin left codeword right codeword
c1 211 011
c2 100 122
c3 022 200
c4 212 010
c5 101 121
c6 020 202
c7 210 012
c8 102 120
c9 021 201
c10 221 001

Then C2(2) = {c2, c5, c8} and C2(0) =
{c3, c6, c9, c10}. This is a problem be-
cause the two sets that will be put on
the scale in the two pans in the second
weighing have different number of coins.
We cannot deduce any information from
this weighing anymore.

Let π : W 7→ W be the function on the set of codewords W with
π(a1a2 . . . an) = b1b2 . . . bn such that ∀i : 1 ≤ i ≤ n : bi ≡ (ai + 1)
mod 2.

Lemma 1.5. The function π preserves the rightiness of codewords: if w ∈W
is a right codeword, then π(w) is also a right codeword.

Proof. Let a1a2 . . . an be a right codeword. By definition it means that
δ(a1a2 . . . an) = aiai+1 with ∀1 ≤ j < i : aj = ai and aiai+1 ∈ {01, 12, 20}.
Let π(a1a2 . . . an) = b1b2 . . . bn. This means that ∀1 ≤ j < i : bj ≡
aj + 1 ≡ ai + 1 ≡ bi mod 2. So δ(b1b2 . . . bn) = bibi+1. If aiai+1 = 01
then bibi+1 = 12, if aiai+1 = 12 then bibi+1 = 20 and if aiai+1 = 20 then
bibi+1 = 01. In all three cases b1b2 . . . bn is also a right codeword.

From the definition of π it is clear that π3(w) = w. From this and
lemma 1.5 it follows that π partitions the set of right codewords into
subsets of size three: {w, π(w), π2(w)}.
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We now partition W into subsets of size six:

{w, wc, π(w), (π(w))c, π2(w), (π2(w))c}

grouping π-generated right codewords and their left complements.
The group with right codewords 00 . . . 01, 11 . . . 12 and 22 . . . 20 we set
aside and call the left-over group.

For the bijection µ : C 7→ W we group coins in groups of three. For
each group we pick a codeword group of six other than the left-over
group and assign left and right complementing codewords to each coin
in the group. If there are one or two coins left over from the grouping
into threes, then we use the left-over codeword group to assign left
and right codewords to those coins. If only one coin is left over we
assign it the right codeword 11 . . . 12 and if two are left over we assign
the right codewords 00 . . . 01 and 22 . . . 20.

With µ defined this way if N ≡ 1 mod 3 then the left-over coin
has right codeword 11 . . . 12 and will not participate in the first n− 1
weighings. If N ≡ 2 mod 3 the two left-over coins with right code-
words 00 . . . 01 and 22 . . . 20 will both participate in every of the first
n− 1 weighings. This ensures that the left-over coins don’t disrupt the
first n− 1 weighings. For a coin that is not in the left-over group it is
easy to see that if it participates in a weighing then there is another
coin in the same group (apply π twice to get to its right codeword)
that also participates on the opposite pan. Overall we have satisfied
the requirement |Ci(0)| = |Ci(2)| for all 1 ≤ i < n. The first n − 1
weighings can proceed as before.

For the last weighing we have the following cases (here the solu-
tion turns adaptive, ie the setup for the last weighing depends on the
outcome of the previous weighings):

The first two cases are for N ≡ 1 mod 3, so one left-over coin cl

with right codeword µ(cl).right = 11 . . . 12.
Case 1. The first n − 1 weighings yielded x1x2 . . . xn−1 = 11 . . . 1

(the scale was balanced in all n− 1 weighings). In this case we know
the left-over coin is the counterfeit cl = c f and we can just put it on
one pan on the scale and any other coin on the other to determine its
type.

Case 2. The first n− 1 weighings yielded x1x2 . . . xn−1 ̸= 11 . . . 1. In
this case we know the left-over coin is not the counterfeit. We can just
leave it out and put Cn(0) on the left pan and Cn(2) \ {cl} on the right
pan of the balance scale. The resulting complete weighing codeword
will point to the counterfeit and its type.

The next cases are for for N ≡ 2 mod 3, with two left-over coins cl0

and cl2 with right codewords µ(cl0).right = 00 . . . 01 and µ(cl2).right =
22 . . . 20.

Case 3. The first n − 1 weighings yielded x1x2 . . . xn−1 = 22 . . . 2.
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Both cl0 and cl2 participated in all n− 1 weighings (according to their
right codewords that start with 00 . . . 0 and 22 . . . 2 respectively). It
means that either cl0 or cl2 is the counterfeit. In the last weighing we
pit cl0 against any coin that is not cl2. If the scale is balanced then cl2 is
the counterfeit and it is heavier. If the scale tilts one way or the other
it shows cl0 as a counterfeit and its type.

Case 4. The first n − 1 weighings yielded x1x2 . . . xn−1 = 00 . . . 0.
Again both cl0 and cl2 participated in all n− 1 weighings and again it
means that either cl0 or cl2 is the counterfeit. In the last weighing we
pit cl2 against any coin that is not cl0. If the scale is balanced then cl0 is
the counterfeit and it is heavier. If the scale tilts one way or the other
it shows cl2 as a counterfeit and its type.

Case 5. The first n − 1 weighings yielded x1x2 . . . xn−1 ̸= 00 . . . 0
and x1x2 . . . xn−1 ̸= 22 . . . 2. In this case both cl0 and cl2 cannot be
counterfeits. In the last weighing we can just do Cn(0) on the left pan
and Cn(2) on the right. The resulting complete weighing codeword
will point to the counterfeit and its type.

This covers all the cases and shows that we can find the counterfeit
coin and its type in n weighings if the number of coins N ≤ 3n−3

2 .
Is this optimal or does a strategy exist that needs less than n weigh-

ings?
To answer this question we want to find a lower bound for the num-

ber of weighings given N coins.

Theorem 1.6. Given are N coins of which one is a counterfeit. If the coun-
terfeit coin and its type can be found in n weighings using a non-adaptive
strategy, then 2N ≤ 3n − 3.

Proof. There are n weighings producing a weighing codeword x1x2 . . . xn

with xi = 0 if left pan sinks in i-th weighing, xi = 1 if i-th weighing is
balanced and xi = 2 if right pan sinks. We have 3n possible codewords
from n weighings.

Assume we have a non-adaptive strategy that finds the counterfeit
coin and its type in n weighings. Since it is non-adaptive the infor-
mation of which coin participates in which weighing on which pan
is already pre-determined. Let’s capture this information in a matrix
p ∈ {0, 1, 2}n×N which we call the participation matrix:

∀1 ≤ i ≤ n, 1 ≤ j ≤ N :

pij =


0, coin j on left pan in i-th weighing

1, coin j not in i-th weighing

2, coin j on right pan in i-th weighing

The number of potential answers to the question of which coin is the
counterfeit and what is its type is 2N (N coins and two possibilities for
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each coin - lighter or heavier). For notational convenience we define
the index sequence N± = {1,−1, 2,−2, . . . , N,−N}. For all 1 ≤ j ≤ N
index j means coin j is the counterfeit and it is heavier, index −j means
coin j is the counterfeit and it is lighter.

Given the participation matrix we define a matrix a ∈ {0, 1, 2}n×N± .
Cell aij tells us what result of weighing i keeps the answer that coin j
is the heavier counterfeit as still a possibility. Cell ai(−j) tells us what
result of weighing i keeps the answer that coin j is the lighter counter-
feit as still a possibility. For example if pij = 0 then coin j is on the left
pan in the i-th weighing and for coin j to be the counterfeit and heav-
ier in the i-th weighing the left pan needs to sink, the corresponding
weighing codeword component needs to be xi = 0 and aij = 0.

In other words matrix a shows for each potential answer what needs
to happen in each weighing so that the answer becomes the actual
answer:

∀1 ≤ i ≤ n, 1 ≤ j ≤ N :

aij =


0, if pij = 0

1, if pij = 1

2, if pij = 2

ai(−j) =


0, if pij = 2

1, if pij = 1

2, if pij = 0

The column j in matrix a is the weighing codeword required for
making coin j and its type (from the sign of j) the actual answer.

For the strategy (represented by the participation matrix p) to work
it needs to not rely on "luck", i.e. a given weighing codeword happens
to be a column in matrix a. All the weighing codewords that can occur
need to be columns in a exactly once.

Since the strategy is successful we know that each coin participates
in at least one weighing11, so the column vector (1, 1, . . . , 1)T does not 11 Otherwise there would be no way to

find its type even if we find the counter-
feit.

appear in p. This means that weighing codeword x1x2 . . . xn = 11 . . . 1
cannot occur and we have 3n − 1 remaining weighing codewords that
can happen.

If 2N > 3n− 1 then it must be that a weighing codeword will appear
more than once in a, so more than one potential answer could be the
actual answer and we wouldn’t know which one. So 2N ≤ 3n − 1.

We observe that in each row i of a if aij = 0 then ai(−j) = 2 and
vice versa. That means that there are ki zeros and ki twos in row i, so
2N − 2ki ones. Also because an even number of coins participates in
each weighing we have that ki is even. So in each row we have an even
number of zeros, ones and twos. There are 3n−1 possible weighing
codewords that start with a one. That means at most 3n−1 columns in
a can have a one in the first position. Since the number of ones is even
and 3n−1 is odd we can have at most 3n−1 − 1 ones in the first row.
Similarly there are 3n−1 possible weighing codewords that start with a
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zero, so k1 ≤ 3n−1 − 1. We then have:

2N = 2N − 2k1 + 2k1 ≤ 3n−1 − 1 + 2(3n−1 − 1) = 3n − 3

Explain connection to Ham-
ming codes for number of
columns smaller than 3n − 3
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