
Last three digits before decimal point

Recurrence relations and modulo arithmetic are the topics of the
problem 1 in this note. 1 Cosmin Negruseri. Code-

jam 2008 round 1a: Problem
c: Numbers. 2008. URL
https://code.google.com/codejam/

contest/32016/dashboard#s=p2
Problem

Find the last three digits before the decimal point for the num-
ber (3 +

√
5)n. For example, when n = 5, (3 +

√
5)5 =

3935.73982 . . ., the answer is 935. For n = 2, (3 +
√

5)2 =

27.4164079 . . ., the answer is 027. The value of n is in the range
2 ≤ n ≤ 2000000000.

Looking at the numbers (3 +
√

5)n, we can see that in general they
are not integers. Ideally we would like to deal with integers. This
sparks the idea of introducing the complement of (3 +

√
5) into the

mix, namely (3 −
√

5). Let’s look at the binomial expansion 2 of 2 Binomial expansion:

(a + b)n =
n

∑
i=0

(
n
i

)
aibn−i

(3 +
√

5)n:

(3 +
√

5)n =
n

∑
i=0

(
n
i

)
3i(

√
5)n−i

Compare this to the binomial expansion of (3 −
√

5)n:

(3 −
√

5)n =
n

∑
i=0

(
n
i

)
3i(−

√
5)n−i

When n − i is even, then (
√

5)n−i and (−
√

5)n−i are integers. When
n − i is odd, then the binomial terms for (

√
5)n−i and (−

√
5)n−i in the

binomial expansions cancel each other out. So it follows that

∀n ∈ N : (3 +
√

5)n + (3 −
√

5)n ∈ N

This is encouraging, so we define for all n:

an = (3 +
√

5)n

bn = (3 −
√

5)n

cn = an + bn

https://code.google.com/codejam/contest/32016/dashboard#s=p2
https://code.google.com/codejam/contest/32016/dashboard#s=p2

2 uwe hoffmann

We see that ∀n ∈ N : 0 < bn < 1, so cn = ⌈an⌉.
Concentrating on cn, lets try to find the hundreds digit, the tens

digit and the units digit of cn.
Consider the polynomial:

(x − (3 +
√

5))(x − (3 −
√

5)) = x2 − 6x + 4

It leads to the recurrence relation: fn = 6 fn−1 − 4 fn−2, for which any
linear combination of an and bn is a solution 3. We set the initial values 3 In-depth treatment of recurrence re-

lations can be found in Chapter 10,
Ralph P. Grimaldi. Discrete and Combi-
natorial Mathematics: An Applied Introduc-
tion. Addison-Wesley, 3rd edition, 1993.
ISBN 0201549832

of fn such that the linear combination cn = an + bn is the solution:
f0 = 2, f1 = 6.
Therefore cn satisfies the recurrence:

cn = 6cn−1 − 4cn−2

c0 = 2

c1 = 6

In theory we could just use this recurrence to compute cn and then
extract the hundreds digit, the tens digit and the units digit. Unfor-
tunately this is not feasible for large n, since cn grows quickly to very
large values. But since we only need the last three digits of the val-
ues, we don’t need to compute the values completely, computing them
modulo 1000 will suffice.

Fortunately according to modulo arithmetic, the recurrence relation
for cn is still valid when doing modulo 1000. Let:

dn ≡ cn mod 1000

and so
dn ≡ 6dn−1 − 4dn−2 mod 1000

Now consider the ordered pairs (dn, dn+1), n ∈ N. Because dn ∈
{0, 1, 2, . . . , 999}, there are only 106 distinct pairs of (dn, dn+1) possi-
ble. So it must be that there exist two indices i, j ∈ N+ such that:

(di, di+1) = (dj, dj+1)

From the recurrence it follows that:

∀k ∈ N : (di+k, di+k+1) = (dj+k, dj+k+1)

(d0, d1) (d1, d2) (d2, d3) (d3, d4) (d4, d5)
(d5, d6)

(d6, d7)

(d7, d8)

(d8, d9)

(d9, d10)
(d10, d11)

(d11, d12)

(d12, d13)

(d13, d14)

(d14, d15)

Figure 1.1: Periodic sequence of pairs
preceded by a prefix of pairs.

The sequence of ordered pairs (dn, dn+1) is periodic with a period
p of at most 106. We can construct a lookup table holding values of dn

from one period p and then compute dn for large n by going into the
lookup table at n mod p.

The periodic part of the sequence doesn’t necessarily start with the
first pair in the sequence or with the second or the third etc... There
might be a sequence prefix of ordered pairs that don’t repeat before it

math notes - last three digits before decimal point 3

goes into the sequence loop of repeating pairs. We write a function
that computes the prefix and the period of the sequence using Floyd’s
cycle finding algorithm4. 4 Floyd’s algorithm is described at

https://en.wikipedia.org/wiki/

Cycle_detection#Tortoise_and_hare.
We use the Haskell implementation
from https://wiki.haskell.org/

Floyd’s_cycle-finding_algorithm

Luckily it turns out that in this case the prefix is 2, 6, 28 and the
periodic sequence has period 100.

With the lookup table we can compute dn for any large n in constant
time. dn gives us the last three digits of cn. Our goal though was to
compute the last three digits before the decimal point of an.

We know cn = ⌈an⌉, so cn − 1 = ⌊an⌋. This means that to get the
digits for an, we need to extract them from dn − 1. Listing 1.1 has the
complete Haskell implementation.

Listing 1.1: Haskell code to compute last 3 digits

module L a s t 3 D i g i t s (
compute

) where

f : : Int −> Int −> Int
f a b = (6 * b − 4 * a) ‘mod‘ 1000

−− ds i s our s e q u e n c e o f d_n
ds = 2 : 6 : zipWith (f) ds (t a i l ds)
−− t h i s g i v e s us t h e p a i r s
dps = zip ds (t a i l ds)

f indCycle : : Eq a => [a] −> ([a] , [a])
f indCycle xxs = fCycle xxs xxs

where fCycle (x : xs) (_ : y : ys)
| x == y = f S t a r t xxs xs
| otherwise = fCycle xs ys

fCycle _ _ = (xxs , []) −− not c y c l i c
f S t a r t (x : xs) (y : ys)
| x == y = ([] , x : fLength x xs)
| otherwise = l e t (as , bs) = f S t a r t xs ys in (x : as , bs)

fLength x (y : ys)
| x == y = []
| otherwise = y : fLength x ys

tps = f indCycle dps
−− ps i s t h e p r e f i x , c s t h e c y c l e o f d_n
(ps , cs) = (map f s t (f s t tps) , map f s t (snd tps))

computeAux : : Int −> Int
computeAux n

| n < (length ps) = ps ! ! n
| otherwise = cs ! ! ((n − (length ps)) ‘mod‘ (length cs))

compute : : Int −> Int
compute n = computeAux n − 1

https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
https://wiki.haskell.org/Floyd's_cycle-finding_algorithm
https://wiki.haskell.org/Floyd's_cycle-finding_algorithm

4 uwe hoffmann

To check our computation we can use this Mathematica function:

In[1]:= last3Digits[n_Integer] := Mod[IntegerPart[(3 + Sqrt[5])^n], 1000]

Bibliography

Ralph P. Grimaldi. Discrete and Combinatorial Mathematics: An Applied
Introduction. Addison-Wesley, 3rd edition, 1993. ISBN 0201549832.

Cosmin Negruseri. Codejam 2008 round 1a: Problem c: Num-
bers. 2008. URL https://code.google.com/codejam/contest/

32016/dashboard#s=p2.

https://code.google.com/codejam/contest/32016/dashboard#s=p2
https://code.google.com/codejam/contest/32016/dashboard#s=p2

	Bibliography

