
Sequences and Series

Select exercises on sequences and series from Chapter 3 of the
Lectures on Real Analysis textbook1. 1 F. Lárusson. Lectures on Real Analy-

sis. Australian Mathematical Society
Lecture Series. Cambridge University
Press, 2012. ISBN 9781107026780. URL
https://books.google.com/books?id=

koj-IrXXwocC

Exercise 3.17, page 35

(a) Let a ≥ 0 and n ∈ N, n ≥ 2. Show that

(1 + a)n ≥ 1
2

n(n − 1)a2

(b) Show that n
1
n → 1 as n → ∞.

Solution. (a) Using the binomial expansion, we get

(1 + a)n =
n

∑
k=0

(
n
k

)
ak = 1 + na +

1
2

n(n − 1)a2 + . . . ≥ 1
2

n(n − 1)a2

(b) Using the inequality from (a) with a = n
1
n − 1 we get

n = (n
1
n − 1 + 1)n ≥ 1

2
n(n − 1)(n

1
n − 1)

So 2
n−1 ≥ (n

1
n − 1) and n

1
n → 1.

Exercise 3.18, page 35

Consider the recursively defined sequence (an) with a1 = 3 and
an+1 = an

2 + 3
an

. Show that (an) converges and find its limit.

Solution. Let’s first prove by induction that ∀n ∈ N : 2 < an ≤ 3:
It’s true for a1 = 3. Assume it is true for a given n and let’s do the

induction step.

an+1 =
an

2
+

3
an

>
2
2
+

3
3
= 2

Also
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an+1 =
an

2
+

3
an

≤ 3
2
+

3
2
= 3

At least we know (an) is bounded. Let us spy a little and assume
(an) does converge, say to limit L. Then L must satisfy:

L =
L
2
+

3
L

which works out to L =
√

6.
Let’s try with a simpler sequence (bn) such that an = bn

√
6.

an+1 = bn+1
√

6 =
an

2
+

3
an

=
bn
√

6
2

+
3

bn
√

6

=
bn
√

6
2

+

√
6

2bn

So (bn) satisfies bn+1 = 1
2 (bn + 1

bn
). We prove that (bn) is monoton

decreasing:

bn+1 ≤ bn ⇔
1
2
(bn +

1
n
) ≤ bn ⇔

b2
n + 1 ≤ 2b2

n ⇔
b2

n ≥ 1 ⇔
bn ≥ 1

We use the AGM inequality2 and show: 2 For positive x and y we have (
√

x +√
y)2 ≥ 0 which when expanded ends

up at x+y
2 ≥ √

xy.
bn+1 =

1
2
(bn +

1
bn

) ≥

√
bn

1
bn

= 1

So (bn) is monoton decreasing and bounded below by 1, so (bn)

converges, and so does (an): bn → 1 and an →
√

6.

Exercise 3.23, page 36

Let ∑ an be a series. Set a+n = max{0, an} and a−n = min{0, an}.
Consider the series ∑ a+n and ∑ a−n .
(a) Prove that ∑ an is absolutely convergent if and only if ∑ a+n
and ∑ a−n both converge. Then ∑ an = ∑ a+n + ∑ a−n .
(b) Prove that if ∑ an is conditionally convergent, then ∑ a+n and
∑ a−n both diverge.
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Solution. We will use the partial sums:

sn =
n

∑
k=1

ak, sa
n =

n

∑
k=1

|ak|

s+n =
n

∑
k=1

a+k , s−n =
n

∑
k=1

a−k

(a) (⇒)

We have ∀n ∈ N : |an| ≥ a+n and |an| ≥ (−1)a−n . Using the compar-
ison test we find ∑ a+n and ∑ a−n converge.

(⇐) ∑ a+n and ∑ a−n converge, so then also ∑ a+n + (−1)∑ a−n con-
verges. But sa

n = s+n + (−1)s−n , so ∑ |an| converges too.
(b) ∑ an converges conditionally. If both ∑ a+n and ∑ a−n converge,

then from (a) we would have ∑ an converges absolutely, contradicting
the premise. So at least one of ∑ a+n or ∑ a−n must diverge.

Assume ∑ a+n diverges (the other case is similar). s+n is monoton-
ically increasing and divergent, so it is unbounded. We have s+n =

sn − s−n and sn is bounded. It follows that s−n has to be unbounded, so
∑ a−n diverges also.

Exercise 3.24, page 36

Let ∑ an be a conditionally convergent series. Prove that for
every σ ∈ R there is a rearrangement of ∑ an that converges to
σ.

Solution. We will construct this rearrangement.
We know from the previous exercise that both ∑ a+n and ∑ a−n di-

verge and both s+n and s−n are unbounded.
Assume first that σ > 0 (the other case is similar). Since s+n is

unbounded, there exists3 a N1 ∈ N such that 3 This N1 has to exist because s+n is un-
bounded. If it was only zeros it would
converge and be bounded.

N1−1

∑
k=1

a+k ≤ σ

N1

∑
k=1

a+k > σ

Let d1 = |∑N1
k=1 a+k − σ|. We see that 0 < d1 ≤ |a+N1

|. Our rearrange-
ment will start with the first N1 terms from ∑ a+n . For the next terms
we turn to ∑ a−n . s−n is also unbounded, so there exists a M1 ∈ N such
that
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M1−1

∑
k=1

a−k ≥ d1

M1

∑
k=1

a−k < d1

We add the first M1 terms from ∑ a−n to the rearrangement. Let
d2 = |∑N1

k=1 a+k + ∑M1
k=1 a−k − σ|. We see that 0 < d2 ≤ |a−M1

|.
Next we go back to ∑ a+n for more terms. The tail of ∑ a+n starting

at N1 + 1 is also unbounded, so there must exist a N2 such that

N2−1

∑
k=N1+1

a+k ≤ d2

N2

∑
k=N1+1

a+k > d2

We add the terms ∑N2
k=N1+1 a+k to the rearrangement and define

d3 = |
N1

∑
k=1

a+k +
M1

∑
k=1

a−k +
N2

∑
k=N1+1

a+k − σ|

We see that 0 < d3 ≤ |a+N2
|.

We go back down with the help of terms from the tail of ∑ a−n start-
ing at M1, a tail that is also unbounded. There must exist a M2 such
that

M2−1

∑
k=M1+1

a+k ≥ d3

M2

∑
k=M1+1

a+k < d3

We add the terms ∑M2
k=M1+1 a−k to the rearrangement and define

d4 = |
N1

∑
k=1

a+k +
M1

∑
k=1

a−k +
N2

∑
k=N1+1

a+k +
M2

∑
k=M1+1

a−k − σ|

We see that 0 < d4 ≤ |a−M2
|.

We continue in this way, switching between terms in ∑ a+n and ∑ a−n ,
constructing a rearrangement of ∑ an that has partial sums that have
distance dn from σ.

The sequence (dn) of distances is bounded by (|an|) and ∑ an is a
conditionally convergent series, so an → 0. That means that dn → 0
and the rearrangement converges to σ.
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Exercise 3.30, page 37

Show that there is a sequence (an) such that for every real num-
ber x, there is a subsequence of (an) converging to x.

Solution. At first glance this seems quite a fantastical premise. How
can there be a sequence that for every real number contains a subse-
quence converging to that number? Isn’t R uncountable? Well, the
best way to prove the existence of such a sequence is to construct it.

First we want to make our life easier: we use the fact that there
exists a bijection between the interval (0, 1) and R. There are many
bijections between these two sets to choose from and we will choose a
continuous one:

F : R → (0, 1)

F(x) =
1

1 + ex

and its inverse

F−1 : (0, 1) → R

F−1(x) = ln(
1 − x

x
)

If we can construct subsequences that converge to x ∈ (0, 1) then
we can use F−1 to map them over to y ∈ R and because of continuity
the mapping of the subsequence will converge to y. The construction
idea is to map a given n ∈ N to a pair (i, j) ∈ N × N. This (i, j) pair
will have the following meaning: j subdivides (0, 1) into j subintervals
of length 1

j and i will select which of those j subintervals we mean. A
given x ∈ (0, 1) will fall into one of them and its corresponding (i, j)
pair will determine the n we use in the subsequence. Increasing the
j and then choosing the corresponding i subinterval containing x will
get us closer and closer to x.

This is the construction idea. We still have to deal with the techni-
calities.

First we want a bijection from N to a subset of N × N where
the pairs (i, j) satisfy i ≤ j. We use a similar approach to the one
we used in a previous note: https://sagenhaft.space/posts/math_

notes/counting/counting.pdf.

(1, 1) row 1

(1, 2), (2, 2) row 2

(1, 3), (2, 3), (3, 3) row 3

(1, 4), (2, 4), (3, 4), (4, 4) row 4
. . .

Figure 1.1: Going from n to (i, j) with
i ≤ j.

We order the pairs (i, j) ∈ N × N satisfying i ≤ j in rows, such that
row r has pairs (1, r), (2, r), . . . , (r, r). Figure 1.1 illustrates the idea.
Our bijection will count going down the rows and going left to right
in each row. So the order is (1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), . . .

https://sagenhaft.space/posts/math_notes/counting/counting.pdf
https://sagenhaft.space/posts/math_notes/counting/counting.pdf
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Lets first deduce the inverse, going from (i, j) to n in that order. For
a given (i, j) we know we are in row j at pair i in that row. Each row
k before row j has k pairs in it, therefore the corresponding position n
in the counting order is:

n =
j−1

∑
k=1

k + i

=
j(j − 1)

2
+ i

We can test this: in the Figure 1.1, pair (2, 4) should be the eighth
pair. 4×3

2 + 2 = 8, so it checks out. We denote M = {(i, j) ∈ N × N :
i ≤ j} and define the function f :

f : M → N

f (i, j) =
j(j − 1)

2
+ i

It is easy to prove that f is a bijection. Suppose we have two pairs
(i1, j1) ̸= (i2, j2). If j1 ̸= j2 then they are in different rows. If j1 = j2
then we must have i1 ̸= i2, so again their mapping is different. It
follows that f is injective.

Given n ∈ N, can we find (i, j) such that f (i, j) = n? The nth pair
falls on some row r. There are r(r−1)

2 pairs in the rows before row r
and r(r+1)

2 pairs in the first r rows. Therefore:

r(r − 1)
2

< n ≤ r(r + 1)
2

The two relevant values for these two quadratic inequalities are
1+

√
1+8n
2 and −1+

√
1+8n

2 because we have to stay positive. Notice that

their difference is 1+
√

1+8n
2 − −1+

√
1+8n

2 = 1, so there is only one posi-
tive integer satisfying both inequalities (as we hoped) and that positive
integer is our sought after row r:

r =
⌈
−1 +

√
1 + 8n

2

⌉
Lets verify this for fun again, making sure that the eighth pair is on

row four:⌈
−1 +

√
1 + 8 × 8
2

⌉
=

⌈
−1 +

√
65

2

⌉
= ⌈3.53113⌉ = 4

We know that j = r and then i = n − j(j−1)
2 . This means that f is

surjective and therefore a bijection.
The inverse f−1(n) is:
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f−1 : N → M

f−1(n) = (i, j), where j =
⌈
−1 +

√
1 + 8n

2

⌉
and i = n − j(j − 1)

2

For a given pair (i, j) lets divide interval (0, 1) into j non-overlapping
intervals:

(0,
1
j
], (

1
j
,

2
j
], . . . , (

j − 2
j

,
j − 1

j
], (

j − 1
j

, 1)

Except for the last subinterval, all other subintervals are left-exclusive
and right-inclusive. The last one is open on both ends. This is just a
technicality, but we now have a set of intervals that don’t intersect and
their union is (0, 1).

A given x ∈ (0, 1) will fall into one of these subintervals. We will
use this fact shortly.

We are ready to define our sequence (an):

an = ln(
j − i

i
), where j =

⌈
−1 +

√
1 + 8n

2

⌉
and i = n − j(j − 1)

2

For any x ∈ R we first get y = F(x) = 1
1+ex which places us in in-

terval (0, 1). We choose the following subsequence of (ank ): choose the
nk so that the corresponding (i, j) pair according to our bijection f−1

is the ith interval of the division of (0, 1) into j non-overlapping inter-
vals that contains y. Keep increasing j and selecting the corresponding
(ank ) according to this criteria. This subsequence converges to x.

This construction is not unique. We made pretty arbitrary choices
along the way. There are more than one sequence (an) with the desired
property.
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