Sequences and Series

SELECT EXERCISES ON SEQUENCES AND SERIES from Chapter 3 of the *Lectures on Real Analysis* textbook¹.

Exercise 3.17, page 35 (a) Let $a \ge 0$ and $n \in \mathbb{N}$, $n \ge 2$. Show that $(1+a)^n \ge \frac{1}{2}n(n-1)a^2$ (b) Show that $n^{\frac{1}{n}} \to 1$ as $n \to \infty$.

Solution. (a) Using the binomial expansion, we get

$$(1+a)^n = \sum_{k=0}^n \binom{n}{k} a^k = 1 + na + \frac{1}{2}n(n-1)a^2 + \ldots \ge \frac{1}{2}n(n-1)a^2$$

(b) Using the inequality from (a) with $a = n^{\frac{1}{n}} - 1$ we get

$$n = (n^{\frac{1}{n}} - 1 + 1)^n \ge \frac{1}{2}n(n-1)(n^{\frac{1}{n}} - 1)$$

So $\frac{2}{n-1} \ge (n^{\frac{1}{n}} - 1)$ and $n^{\frac{1}{n}} \to 1$.

Exercise 3.18, page 35

Consider the recursively defined sequence (a_n) with $a_1 = 3$ and $a_{n+1} = \frac{a_n}{2} + \frac{3}{a_n}$. Show that (a_n) converges and find its limit.

Solution. Let's first prove by induction that $\forall n \in \mathbb{N} : 2 < a_n \leq 3$:

It's true for $a_1 = 3$. Assume it is true for a given *n* and let's do the induction step.

$$a_{n+1} = \frac{a_n}{2} + \frac{3}{a_n} > \frac{2}{2} + \frac{3}{3} = 2$$

Also

¹ F. Lárusson. *Lectures on Real Analysis.* Australian Mathematical Society Lecture Series. Cambridge University Press, 2012. ISBN 9781107026780. URL https://books.google.com/books?id= koj-IrXXwocC

$$a_{n+1} = \frac{a_n}{2} + \frac{3}{a_n} \le \frac{3}{2} + \frac{3}{2} = 3$$

At least we know (a_n) is bounded. Let us spy a little and assume (a_n) does converge, say to limit *L*. Then *L* must satisfy:

$$L = \frac{L}{2} + \frac{3}{L}$$

which works out to $L = \sqrt{6}$.

Let's try with a simpler sequence (b_n) such that $a_n = b_n \sqrt{6}$.

$$a_{n+1} = b_{n+1}\sqrt{6} = \frac{a_n}{2} + \frac{3}{a_n}$$
$$= \frac{b_n\sqrt{6}}{2} + \frac{3}{b_n\sqrt{6}}$$
$$= \frac{b_n\sqrt{6}}{2} + \frac{\sqrt{6}}{2b_n}$$

So (b_n) satisfies $b_{n+1} = \frac{1}{2}(b_n + \frac{1}{b_n})$. We prove that (b_n) is monoton decreasing:

$$b_{n+1} \le b_n \Leftrightarrow$$

 $rac{1}{2}(b_n + rac{1}{n}) \le b_n \Leftrightarrow$
 $b_n^2 + 1 \le 2b_n^2 \Leftrightarrow$
 $b_n^2 \ge 1 \Leftrightarrow$
 $b_n \ge 1$

We use the AGM inequality² and show:

Exercise 3.23, page 36

$$b_{n+1} = rac{1}{2}(b_n + rac{1}{b_n}) \ge \sqrt{b_n rac{1}{b_n}} = 1$$

So (b_n) is monoton decreasing and bounded below by 1, so (b_n) converges, and so does (a_n) : $b_n \to 1$ and $a_n \to \sqrt{6}$.

Let $\sum a_n$ be a series. Set $a_n^+ = max\{0, a_n\}$ and $a_n^- = min\{0, a_n\}$. Consider the series $\sum a_n^+$ and $\sum a_n^-$. (a) Prove that $\sum a_n$ is absolutely convergent if and only if $\sum a_n^+$ and $\sum a_n^-$ both converge. Then $\sum a_n = \sum a_n^+ + \sum a_n^-$. (b) Prove that if $\sum a_n$ is conditionally convergent, then $\sum a_n^+$ and $\sum a_n^-$ both diverge. ² For positive *x* and *y* we have $(\sqrt{x} + \sqrt{y})^2 \ge 0$ which when expanded ends up at $\frac{x+y}{2} \ge \sqrt{xy}$.

Solution. We will use the partial sums:

$$s_n = \sum_{k=1}^n a_k, \quad s_n^a = \sum_{k=1}^n |a_k|$$
$$s_n^+ = \sum_{k=1}^n a_k^+, \quad s_n^- = \sum_{k=1}^n a_k^-$$

(a) (\Rightarrow)

We have $\forall n \in \mathbb{N}$: $|a_n| \ge a_n^+$ and $|a_n| \ge (-1)a_n^-$. Using the comparison test we find $\sum a_n^+$ and $\sum a_n^-$ converge.

 $(\Leftarrow) \sum a_n^+$ and $\sum a_n^-$ converge, so then also $\sum a_n^+ + (-1) \sum a_n^-$ converges. But $s_n^a = s_n^+ + (-1)s_n^-$, so $\sum |a_n|$ converges too.

(b) $\sum a_n$ converges conditionally. If both $\sum a_n^+$ and $\sum a_n^-$ converge, then from (a) we would have $\sum a_n$ converges absolutely, contradicting the premise. So at least one of $\sum a_n^+$ or $\sum a_n^-$ must diverge.

Assume $\sum a_n^+$ diverges (the other case is similar). s_n^+ is monotonically increasing and divergent, so it is unbounded. We have $s_n^+ = s_n - s_n^-$ and s_n is bounded. It follows that s_n^- has to be unbounded, so $\sum a_n^-$ diverges also.

Exercise 3.24, page 36

Let $\sum a_n$ be a conditionally convergent series. Prove that for every $\sigma \in \mathbb{R}$ there is a rearrangement of $\sum a_n$ that converges to σ .

Solution. We will construct this rearrangement.

We know from the previous exercise that both $\sum a_n^+$ and $\sum a_n^-$ diverge and both s_n^+ and s_n^- are unbounded.

Assume first that $\sigma > 0$ (the other case is similar). Since s_n^+ is unbounded, there exists³ a $N_1 \in \mathbb{N}$ such that

$$\sum_{k=1}^{N_1-1} a_k^+ \leq \sigma$$
$$\sum_{k=1}^{N_1} a_k^+ > \sigma$$

Let $d_1 = |\sum_{k=1}^{N_1} a_k^+ - \sigma|$. We see that $0 < d_1 \le |a_{N_1}^+|$. Our rearrangement will start with the first N_1 terms from $\sum a_n^+$. For the next terms we turn to $\sum a_n^-$. s_n^- is also unbounded, so there exists a $M_1 \in \mathbb{N}$ such that

³ This N_1 has to exist because s_n^+ is unbounded. If it was only zeros it would converge and be bounded.

$$\sum_{k=1}^{M_1-1} a_k^- \ge d_1$$
$$\sum_{k=1}^{M_1} a_k^- < d_1$$

We add the first M_1 terms from $\sum a_n^-$ to the rearrangement. Let $d_2 = |\sum_{k=1}^{N_1} a_k^+ + \sum_{k=1}^{M_1} a_k^- - \sigma|.$ We see that $0 < d_2 \le |a_{M_1}^-|.$ Next we go back to $\sum a_n^+$ for more terms. The tail of $\sum a_n^+$ starting

at $N_1 + 1$ is also unbounded, so there must exist a N_2 such that

$$\sum_{k=N_1+1}^{N_2-1} a_k^+ \leq d_2$$

 $\sum_{k=N_1+1}^{N_2} a_k^+ > d_2$

We add the terms $\sum_{k=N_1+1}^{N_2} a_k^+$ to the rearrangement and define

$$d_3 = \left|\sum_{k=1}^{N_1} a_k^+ + \sum_{k=1}^{M_1} a_k^- + \sum_{k=N_1+1}^{N_2} a_k^+ - \sigma\right|$$

We see that $0 < d_3 \le |a_{N_2}^+|$.

We go back down with the help of terms from the tail of $\sum a_n^-$ starting at M_1 , a tail that is also unbounded. There must exist a M_2 such that

$$\sum_{k=M_1+1}^{M_2-1} a_k^+ \ge d_3$$
$$\sum_{k=M_1+1}^{M_2} a_k^+ < d_3$$

We add the terms $\sum_{k=M_1+1}^{M_2} a_k^-$ to the rearrangement and define

$$d_4 = \left|\sum_{k=1}^{N_1} a_k^+ + \sum_{k=1}^{M_1} a_k^- + \sum_{k=N_1+1}^{N_2} a_k^+ + \sum_{k=M_1+1}^{M_2} a_k^- - \sigma\right|$$

We see that $0 < d_4 \le |a_{M_2}^-|$.

We continue in this way, switching between terms in $\sum a_n^+$ and $\sum a_n^-$, constructing a rearrangement of $\sum a_n$ that has partial sums that have distance d_n from σ .

The sequence (d_n) of distances is bounded by $(|a_n|)$ and $\sum a_n$ is a conditionally convergent series, so $a_n \rightarrow 0$. That means that $d_n \rightarrow 0$ and the rearrangement converges to σ .

Exercise 3.30, page 37

Show that there is a sequence (a_n) such that for every real number x, there is a subsequence of (a_n) converging to x.

Solution. At first glance this seems quite a fantastical premise. How can there be a sequence that for every real number contains a subsequence converging to that number? Isn't \mathbb{R} uncountable? Well, the best way to prove the existence of such a sequence is to construct it.

First we want to make our life easier: we use the fact that there exists a bijection between the interval (0, 1) and \mathbb{R} . There are many bijections between these two sets to choose from and we will choose a continuous one:

$$F: \mathbb{R} \to (0, 1)$$
$$F(x) = \frac{1}{1 + e^x}$$

and its inverse

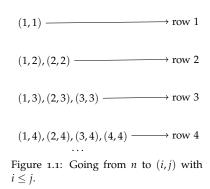
$$F^{-1}: (0,1) \to \mathbb{R}$$
$$F^{-1}(x) = \ln(\frac{1-x}{x})$$

If we can construct subsequences that converge to $x \in (0,1)$ then we can use F^{-1} to map them over to $y \in \mathbb{R}$ and because of continuity the mapping of the subsequence will converge to y. The construction idea is to map a given $n \in \mathbb{N}$ to a pair $(i, j) \in \mathbb{N} \times \mathbb{N}$. This (i, j) pair will have the following meaning: j subdivides (0, 1) into j subintervals of length $\frac{1}{j}$ and i will select which of those j subintervals we mean. A given $x \in (0, 1)$ will fall into one of them and its corresponding (i, j)pair will determine the n we use in the subsequence. Increasing the j and then choosing the corresponding i subinterval containing x will get us closer and closer to x.

This is the construction idea. We still have to deal with the technicalities.

First we want a bijection from \mathbb{N} to a subset of $\mathbb{N} \times \mathbb{N}$ where the pairs (i, j) satisfy $i \leq j$. We use a similar approach to the one we used in a previous note: https://sagenhaft.space/posts/math_notes/counting/counting.pdf.

We order the pairs $(i, j) \in \mathbb{N} \times \mathbb{N}$ satisfying $i \leq j$ in rows, such that row r has pairs $(1, r), (2, r), \dots, (r, r)$. Figure 1.1 illustrates the idea. Our bijection will count going down the rows and going left to right in each row. So the order is $(1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), \dots$



6 UWE HOFFMANN

Lets first deduce the inverse, going from (i, j) to n in that order. For a given (i, j) we know we are in row j at pair i in that row. Each row k before row j has k pairs in it, therefore the corresponding position nin the counting order is:

$$n = \sum_{k=1}^{j-1} k + i$$
$$= \frac{j(j-1)}{2} + i$$

We can test this: in the Figure 1.1, pair (2,4) should be the eighth pair. $\frac{4\times3}{2} + 2 = 8$, so it checks out. We denote $M = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i \leq j\}$ and define the function f:

$$f: M \to \mathbb{N}$$
$$f(i, j) = \frac{j(j-1)}{2} + i$$

It is easy to prove that f is a bijection. Suppose we have two pairs $(i_1, j_1) \neq (i_2, j_2)$. If $j_1 \neq j_2$ then they are in different rows. If $j_1 = j_2$ then we must have $i_1 \neq i_2$, so again their mapping is different. It follows that f is injective.

Given $n \in \mathbb{N}$, can we find (i, j) such that f(i, j) = n? The *n*th pair falls on some row *r*. There are $\frac{r(r-1)}{2}$ pairs in the rows before row *r* and $\frac{r(r+1)}{2}$ pairs in the first *r* rows. Therefore:

$$\frac{r(r-1)}{2} < n \le \frac{r(r+1)}{2}$$

The two relevant values for these two quadratic inequalities are $\frac{1+\sqrt{1+8n}}{2}$ and $\frac{-1+\sqrt{1+8n}}{2}$ because we have to stay positive. Notice that their difference is $\frac{1+\sqrt{1+8n}}{2} - \frac{-1+\sqrt{1+8n}}{2} = 1$, so there is only one positive integer satisfying both inequalities (as we hoped) and that positive integer is our sought after row *r*:

$$r = \left\lceil \frac{-1 + \sqrt{1 + 8n}}{2} \right\rceil$$

Lets verify this for fun again, making sure that the eighth pair is on row four:

$$\left\lceil \frac{-1 + \sqrt{1 + 8 \times 8}}{2} \right\rceil = \left\lceil \frac{-1 + \sqrt{65}}{2} \right\rceil = \left\lceil 3.53113 \right\rceil = 4$$

We know that j = r and then $i = n - \frac{j(j-1)}{2}$. This means that f is surjective and therefore a bijection.

The inverse $f^{-1}(n)$ is:

$$f^{-1}: \mathbb{N} \to M$$

 $f^{-1}(n) = (i, j)$, where $j = \left\lceil \frac{-1 + \sqrt{1 + 8n}}{2} \right\rceil$ and $i = n - \frac{j(j-1)}{2}$

For a given pair (i, j) lets divide interval (0, 1) into j non-overlapping intervals:

$$(0, \frac{1}{j}], (\frac{1}{j}, \frac{2}{j}], \dots, (\frac{j-2}{j}, \frac{j-1}{j}], (\frac{j-1}{j}, 1)$$

Except for the last subinterval, all other subintervals are left-exclusive and right-inclusive. The last one is open on both ends. This is just a technicality, but we now have a set of intervals that don't intersect and their union is (0, 1).

A given $x \in (0, 1)$ will fall into one of these subintervals. We will use this fact shortly.

We are ready to define our sequence (a_n) :

$$a_n = \ln(\frac{j-i}{i})$$
, where $j = \left\lceil \frac{-1 + \sqrt{1+8n}}{2} \right\rceil$ and $i = n - \frac{j(j-1)}{2}$

For any $x \in \mathbb{R}$ we first get $y = F(x) = \frac{1}{1+e^x}$ which places us in interval (0,1). We choose the following subsequence of (a_{n_k}) : choose the n_k so that the corresponding (i,j) pair according to our bijection f^{-1} is the *i*th interval of the division of (0,1) into *j* non-overlapping intervals that contains *y*. Keep increasing *j* and selecting the corresponding (a_{n_k}) according to this criteria. This subsequence converges to *x*.

This construction is not unique. We made pretty arbitrary choices along the way. There are more than one sequence (a_n) with the desired property.

Bibliography

F. Lárusson. Lectures on Real Analysis. Australian Mathematical Society Lecture Series. Cambridge University Press, 2012. ISBN 9781107026780. URL https://books.google.com/books?id= koj-IrXXwocC.