
0-1 Sequences

Counting inversions is the topic of the problem 1 in this note. 1 Tung Kam Chuen. 0-1 sequences.
2016. URL https://open.kattis.com/

problems/sequences

Problem

You are given a sequence, in the form of a string with characters ‘0’, ‘1’, and ‘?’ only. Suppose there
are k ‘?’s. Then there are 2k ways to replace each ‘?’ by a ‘0’ or a ‘1’, giving 2k different 0-1 sequences
(0-1 sequences are sequences with only zeroes and ones).
For each 0-1 sequence, define its number of inversions as the minimum number of adjacent swaps
required to sort the sequence in non-decreasing order. In this problem, the sequence is sorted in non-
decreasing order precisely when all the zeroes occur before all the ones. For example, the sequence
11010 has 5 inversions. We can sort it by the following moves: 11010 → 11001 → 10101 → 01101 →
01011 → 00111.
Find the sum of the number of inversions of the 2k sequences, modulo 109 + 7.

There are two ways to count the necessary inversions to sort the 2k

0-1 sequences: we could count for each ’0’ how many ’1’ to its left are
marching by in the right direction on their way to being sorted. Or we
could count for each ’1’ how many zeros to its right are marching by
in the left direction on their way to being sorted.

We arbitrary choose the first way of counting the inversions.
In the sequence b = (b0, b1, . . . , bn − 1) with characters ‘0’, ‘1’, and

‘?’ we will look at each position i where b[i] = ‘0’ and each position i
where b[i] = ‘?’.

We define q(i) to be the number of question marks to the left of i
and o(i) to be the number of ones to the left of i:

q(i) = |{j : 0 ≤ j < i : b[j] = ‘?’}|
o(i) = |{j : 0 ≤ j < i : b[j] = ‘1’}|

Let s(i) be the number of inversions coming from b[i]. When b[i] =
‘1’ we set s(i) = 0 so as to not overcount2. 2 We chose to count ones marching right,

passing zeros.

https://open.kattis.com/problems/sequences
https://open.kattis.com/problems/sequences

2 uwe hoffmann

When b[i] = ‘0’ we know that all 2k
0-1 sequences will have o(i)

ones to the left of i. These definitely will count in s(i). We also need
to consider all ones coming from setting ‘?’ into ‘1’ to the left of i.
There are q(i) possibilities here. For each j : 1 ≤ j ≤ q(i) we can
turn j question marks into ones. We have to choose the subset of size
j of positions from the set of q(i) positions with question marks3. It 3 As a convenience we label the q(i) po-

sitions with question marks as position
1, 2, . . . q(i).

follows that:

s(i) = 2ko(i) + 2k−q(i)(
q(i)

∑
j=1

(
q(i)

j

)
j)

There is a neat way to simplify the sum with the binomial above
using a combinatorial proof: Given a set of people of size N, count in
how many ways you can choose a team and from that team choose a
leader. There are two ways to count here. In the first way count the
number of ways to choose a leader: N ways. Then count the number
of ways to choose the rest of the team, which is the number of subsets
from the set of people without the leader, so 2N−1. In the second way
for each possible team size, count the number of possible teams and
then count the number of possible leader in that team. Because both
ways count the same things, we have:

N2N−1 =
N

∑
j=1

(
N
j

)
j

Applied to our s(i) we get:

s(i) = 2ko(i) + 2k−q(i)q(i)2q(i)−1

= 2ko(i) + 2k−1q(i)

For b[i] = ‘?’ we do a similar calculation4, with the only difference 4 We instantiate this question mark as a
zero. The case where this position gets
instantiated as a one is covered by other
zero positions.

being the number of question marks to the right of i: 2k−q(i)−1 (one less
than in the previous calculation, since position i is a question mark).
We get:

s(i) = 2ko(i) + 2k−2q(i)

The two cases cover all the counts and we can write the following
loop (in Go, leaving out the modulus optimizations):

math notes - 0-1 sequences 3

seen_ones := 0

seen_qmarks := 0

num_inversions := 0

for i : = 0 ; i < n ; i ++ {
switch {
case b [i] == ’ 0 ’ :

num_inversions += 2^k * seen_ones + 2^(k−1) * seen_qmarks
case b [i] == ’ 1 ’ : seen_ones++
case b [i] == ’ ? ’ :

num_inversions += 2^k * seen_ones + 2^(k−2) * seen_qmarks
seen_qmarks++

}
}

For a more complete implementation in C++, see
https://github.com/uwedeportivo/kattis/tree/main/sequences.

https://github.com/uwedeportivo/kattis/tree/main/sequences

Bibliography

Tung Kam Chuen. 0-1 sequences. 2016. URL https://open.kattis.

com/problems/sequences.

https://open.kattis.com/problems/sequences
https://open.kattis.com/problems/sequences

	Bibliography

