
Prison Cells

Problem

A prison has n cells with all cell doors shut initially. The warden
is a little weird so he walks the whole row of cells and opens
every cell door. Then he walks the whole row again and shuts
every other cell door. Then he walks the whole row again and
opens every third door then walks the row again and shuts ev-
ery 4th door etc. You can assume that the doors are numbered
0 to (n − 1) and the warden always starts at zero and walks
them in order. Which doors will stay open when the warden is
done ?

Each time the warden walks the row of cells he toggles the state
(open or close) of some of the cells. It is clear then that the number of
toggles to one cell determines if it is open or closed in the end. In the
beginning each cell door is closed so if the number of toggles is even
then it stays closed, if it is odd then it is open at the end.

The goal then is to calculate the number of toggles for a cell. The
cells are numbered 0 to (n − 1) so lets try to calculate the number of
toggles for cell k. The first time the warden walks the row of cells he
toggles each cell including our cell k. The second time he toggles cells
0, 2, 4, . . . . That means he toggles cell k if k is even. The third time
around he toggles cells 0, 3, 6, . . . so he toggles cell k if k is a multiple
of 3. If we continue we see that the cell k gets toggled on the warden’s
d walk if k is a multiple of d or said differently if d divides k.

It follows that the number of toggles T(k) for cell k is

T(k) = ∑
d|k

1.

This is already pretty good but for the expression above it’s not so
obvious for which k T(k) will be even and for which it will be odd. So
we will make a short excursion into basic number theory in the hopes
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that we can transform the expression into something more revealing.

A little number theory

We say that two integers m and n are relatively prime if the only com-
mon divisors are ±1 and we write (m, n) = 1 in that case.

Definition 1.1. A function f : N → Ω with Ω a field is said to be
weakly multiplicative if

∀ m, n ∈ N : (m, n) = 1 ⇒ f (mn) = f (m) f (n).

Theorem 1.2. If f is a weakly multiplicative function then so is the function

g(n) = ∑
d|n

f (d).

Proof. Let m1, m2 ∈ N with (m1, m2) = 1. Let’s define two sets

S1 = {d : d | m1m2}, S2 = {d1d2 : d1 | m1 ∧ d2 | m2}.

It is obvious that S2 ⊆ S1. On the other hand

∀x ∈ S1 ⇝ x | m1m2 (by definition)
Let k = (x, m1), so x = yk, m1 = zk, for some y, z ∈ N and (y, z) = 1
x | m1m2 ⇝ yk | zkm2 ⇝ y | m2 because (y, z) = 1
This means x = yk ∈ S2 because y | m2 ∧ k | m1.

So we have S1 = S2. We can now write

g(m1m2)

= < definition of g >

(∑ d : d | m1m2 : f (d))
= < index sets S1 = S2 so we change bounded variables >

(∑ d1, d2 : d1 | m1 ∧ d2 | m2 : f (d1d2))

= < f is weakly multiplicative and (d1, d2) = 1 >

(∑ d1, d2 : d1 | m1 ∧ d2 | m2 : f (d1) f (d2))

= < nesting >

(∑ d1 : d1 | m1 : (∑ d2 : d2 | m2 : f (d1) f (d2)))

= < multiplication distributes over addition >

(∑ d1 : d1 | m1 : f (d1)(∑ d2 : d2 | m2 : f (d2)))

= < definition of g >

(∑ d1 : d1 | m1 : f (d1)g(m2))

= < multiplication distributes over addition >

(∑ d1 : d1 | m1 : f (d1))g(m2)

= < definition of g >

g(m1)g(m2).
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which proves the theorem.

The theorem tells us that the function T(k) which is the number of
toggles for cell k

T(k) = ∑
d|k

1.

is in fact a weakly multiplicative function because the function inside
the sum (the constant function 1) is trivially a weakly multiplicative
function.

A more detailed solution

If we use the unique prime factorization of k

k = pa1
1 pa1

1 . . . pah
h

and use the fact that (pai
i , p

aj
j ) = 1 we get

T(k) =
h

∏
i=1

T(pai
i ).

But it’s easy to see that T(pai
i ) = ai + 1 so we have

T(k) =
h

∏
i=1

(ai + 1).

When is T(k) even ? When any of the ai are odd. To find out if a cell
is open or closed do the prime factorization and look at the exponents
of the primes. If any of them is odd then the cell stays closed.


