Points on circle

Problem

N distinct points, numbered from 0 onwards, are located on a circle (in the rest of this problem all point numbers are taken $\bmod N)$. Point $i+1$ is the clockwise neighbor of point i. An integer array, $\operatorname{dist}[0 \ldots N)$, is given such that dist. i is the distance (along the circle) between points i and $i+1$. Derive a program to determine whether four of these points form a rectangle.

We adopt the same notation used in Programming in the $1990{ }^{1}{ }^{1}$ and Programming, The Derivation of Algorithms ${ }^{2}$: The notation of function application is the "dot" notation with name of function, followed by arguments, each separated by a dot. The notation of quantified expressions has the operator followed by the bounded variables, then a colon followed by the range for the bounded variables and ended with a colon and the actual expression. So

$$
\left(\sum k: i \leq k<j: x_{k}\right)
$$

corresponds to the more classical mathematical notation $\sum_{k=i}^{j-1} x_{k}$.
For our derivation steps in predicate calculus we will use the following notation:

$$
\begin{aligned}
& A \\
&=\{\text { reason why A equals } B\} \\
& B \\
& \leq\{\text { reason why } B \text { is less than } C\} \\
& C
\end{aligned}
$$

We are asked to solve S in
||

$$
\begin{aligned}
& \operatorname{con} N: \operatorname{int} ;\{N \geq 4\} \\
& \quad \operatorname{dist}(i: 0 \leq i<N): \text { int } ;\{\forall i: 0 \leq i<N: \operatorname{dist} . i>0\}
\end{aligned}
$$

${ }^{1}$ Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990
${ }^{2}$ A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall, 1990

```
    var r : bool;
    S
    {r:r\equiv(\exists4 points that form a rectangle ) }
]|
```

Let's first develop a more manageable postcondition. Evidently four points that form a rectangle is equivalent to two pairs of diametral opposing points. We introduce a function for the set of all indices from point x to point y in clockwise direction along the circle:

$$
\begin{aligned}
& I:[0, \ldots, N) \rightarrow[0, \ldots, N) \rightarrow 2^{[0, \ldots, N)} \\
& I . x . y:=\left\{\begin{array}{l}
{[x, \ldots, y) \quad, x \leq y} \\
{[x, \ldots, N) \cup[0, \ldots, y) \quad, x>y}
\end{array}\right.
\end{aligned}
$$

Let C be the circumference of the circle. We define function

$$
\begin{aligned}
& f:[0, \ldots, N) \rightarrow[0, \ldots, N) \rightarrow \text { int } \\
& \text { f.x.y }:=C-2\left(\sum i: i \in I . x . y: \text { dist. }\right)
\end{aligned}
$$

We want to find the number of diametral opposing pairs of points:

```
|[
    con N: int; {N\geq2}
        dist(i:0\leqi<N): int; {\foralli:0\leqi<N:dist.i>0}
    var r: int;
        S
    {r:r=(# x,y:0\leqx<N,0\leqy<N:f.x.y=0)}
]|
```

Lemma 1.1. The function f is increasing in its first argument and decreasing in its second argument.

Proof. f is increasing in its first argument:

$$
\begin{aligned}
& f \cdot(x+1) \cdot y \\
= & \{\text { definition of } f\} \\
& C-2\left(\sum i: i \in I .(x+1) \cdot y: \text { dist. } i\right) \\
= & \{I \cdot(x+1) \cdot y=I . x . y \backslash\{x\}\} \\
& C-2\left(\left(\sum i: i \in I . x . y: \text { dist. } i\right)-\text { dist. } x\right) \\
= & \{\text { definition of } f\} \\
& f . x \cdot y+2 \text { dist. } x \\
> & \{\text { dist. } x>0\} \\
& f . x . y
\end{aligned}
$$

f is decreasing in its second argument:

$$
\begin{aligned}
& f . x .(y+1) \\
= & \{\text { definition of } f\} \\
& C-2\left(\sum i: i \in I . x .(y+1): \text { dist. } i\right) \\
= & \{I . x .(y+1)=I . x . y \cup\{y\}\} \\
& C-2\left(\left(\sum i: i \in I . x . y: \text { dist. } i\right)+\text { dist. } y\right) \\
= & \{\text { definition of } f\} \\
& \text { f.x.y }-2 \text { dist. }\} \\
< & \{\text { dist.y }>0\} \\
& f . x . y
\end{aligned}
$$

Looking at the postcondition

$$
\{r: r=(\# x, y: 0 \leq x<N, 0 \leq y<N: f . x . y=0)\}
$$

we define the function

$$
\text { G.a.b }=(\# x, y: a \leq x<N, b \leq y<N: f . x . y=0)
$$

and we will maintain the invariants:

$$
\begin{array}{l:l}
P_{0} & : \\
P_{1} & : \\
P_{2} & : 0 \leq a \leq b \leq N
\end{array}
$$

The initial values $r, a, b:=0,0,0$ satisfy the invariants and

$$
a=N \vee b=N \Rightarrow \text { G.a.b }=0 \Rightarrow r=\text { G.0.0 }
$$

establishes the postcondition, so we can stop when $a=N \vee b=N$. So far we have

```
|[
    con N: int; {N\geq4}
        dist(i:0\leqi<N): int; {\foralli:0\leqi<N:dist.i>0}
    var a,b,r: int;
    a,b,r:= 0,0,0;
    do a}=N~b\not=
        S
    od
    {r:r=G.0.0}
]|
```

We need to increment a, b and maintain the invariants:

$$
\begin{aligned}
& \text { G.a.b } \\
& =\{\text { definition of } G\} \\
& \text { (\# } x, y: a \leq x<N, b \leq y<N: f . x . y=0) \\
& =\{\text { range split } x=a\} \\
& G .(a+1) . b+(\# y: b \leq y<N: f . a \cdot y=0) \\
& =\{f \text { is decreasing in second argument (1.1), and assume } f . a . b<0\} \\
& \text { G. }(a+1) . b \\
& \text { so } f . a \cdot b<0 \Rightarrow \text { G.a.b }=\text { G. }(a+1) . b \text {. Similarly } \\
& \text { G.a.b } \\
& =\{\text { definition of } G\} \\
& \text { (\# } x, y: a \leq x<N, b \leq y<N: f . x . y=0) \\
& =\{\text { range split } y=b\} \\
& \text { G.a. }(b+1)+(\# x: a \leq y<N: f . x . b=0) \\
& =\{f \text { is increasing in second argument (1.1), and assume } f . a . b>0\} \\
& \text { G.a. }(b+1) \\
& \text { so } f . a \cdot b>0 \Rightarrow \text { G.a.b }=\text { G.a. }(b+1) \text {. Also for the case } f \cdot a \cdot b=0 \text { we have } \\
& r+G . a . b \\
& =\{\text { definition of } G\} \\
& r+(\# x, y: a \leq x<N, b \leq y<N: f . x . y=0) \\
& =\{\text { range split } x=a\} \\
& r+G .(a+1) \cdot b+(\# y: b \leq y<N: f . a \cdot y=0) \\
& =\{f \text { is decreasing in second argument (1.1), and assume } f . a \cdot b=0\} \\
& (r+1)+G .(a+1) \cdot b
\end{aligned}
$$

Our program becomes
|| [
con $N:$ int; $\{N \geq 4\}$ $\operatorname{dist}(i: 0 \leq i<N):$ int; $\{\forall i: 0 \leq i<N:$ dist. $i>0\}$
$\operatorname{var} a, b, r:$ int;
$a, b, r:=0,0,0$;
do $a \neq N \wedge b \neq N$
if
$\square f . a \cdot b>0 \rightarrow b:=b+1$
$\square f . a . b<0 \rightarrow a:=a+1$f.a. $b=0 \rightarrow a, r:=a+1, r+1$

fi

od
$\{r: r=$ G.0.0 $\}$
]||
We cannot have f in the program text so the last thing we have to do is eliminate f. We do this by introducing a new variable c : int and
maintaining the additional invariant $P_{3}: c=f . a . b$. Lemma 1.1 already showed us the expressions for f when the first or the second argument increase, so our final program looks like this ${ }^{3}$
||
$\operatorname{con} N:$ int; $\{N \geq 4\}$
$\operatorname{dist}(i: 0 \leq i<N):$ int; $\{\forall i: 0 \leq i<N: \operatorname{dist} . i>0\}$
$\operatorname{var} a, b, c, r$: int;
$a, b, c, r:=0,0, C, 0$;
do $a \neq N \wedge b \neq N$
if$c>0 \rightarrow b, c:=b+1, c-2$ dist. $b$$c<0 \rightarrow a, c:=a+1, c+2$ dist. $a$$c=0 \rightarrow a, c, r:=a+1,2$ dist. $a, r+1$

fi

od
$\{r: r=$ G.0.0 $\}$
] $\|$
${ }^{3}$ The program is bound by the function $2 N-a-b$ so it is $O(N)$. The solution is an example of the slope search technique.

Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990.
A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall, 1990.

