
Points on circle

Problem

N distinct points, numbered from 0 onwards, are located on a
circle (in the rest of this problem all point numbers are taken
modN). Point i + 1 is the clockwise neighbor of point i. An in-
teger array, dist[0 . . . N), is given such that dist.i is the distance
(along the circle) between points i and i + 1. Derive a program
to determine whether four of these points form a rectangle.

We adopt the same notation used in Programming in the 1990s 1 and 1 Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

Programming, The Derivation of Algorithms2: The notation of function

2 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

application is the "dot" notation with name of function, followed by
arguments, each separated by a dot. The notation of quantified ex-
pressions has the operator followed by the bounded variables, then a
colon followed by the range for the bounded variables and ended with
a colon and the actual expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the following
notation:

A
= {reason why A equals B}

B
≤ {reason why B is less than C}

C

We are asked to solve S in

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}



2 uwe hoffmann

var r : bool;
S

{r : r ≡ (∃ 4 points that form a rectangle)}
]∥

Let’s first develop a more manageable postcondition. Evidently four
points that form a rectangle is equivalent to two pairs of diametral
opposing points. We introduce a function for the set of all indices
from point x to point y in clockwise direction along the circle:

I : [0, . . . , N) → [0, . . . , N) → 2[0,...,N)

I.x.y :=

[x, . . . , y) , x ≤ y

[x, . . . , N)
⋃

[0, . . . , y) , x > y

Let C be the circumference of the circle. We define function

f : [0, . . . , N) → [0, . . . , N) → int
f .x.y := C − 2(∑ i : i ∈ I.x.y : dist.i)

We want to find the number of diametral opposing pairs of points:

∥[
con N : int; {N ≥ 2}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var r : int;

S
{r : r = (# x, y : 0 ≤ x < N, 0 ≤ y < N : f .x.y = 0)}

]∥

Lemma 1.1. The function f is increasing in its first argument and decreasing
in its second argument.

Proof. f is increasing in its first argument:

f .(x + 1).y
= {definition of f }

C − 2(∑ i : i ∈ I.(x + 1).y : dist.i)
= {I.(x + 1).y = I.x.y \ {x}}

C − 2((∑ i : i ∈ I.x.y : dist.i)− dist.x)
= {definition of f }

f .x.y + 2dist.x
> {dist.x > 0}

f .x.y



math notes - points on circle 3

f is decreasing in its second argument:

f .x.(y + 1)
= {definition of f }

C − 2(∑ i : i ∈ I.x.(y + 1) : dist.i)
= {I.x.(y + 1) = I.x.y

⋃ {y}}
C − 2((∑ i : i ∈ I.x.y : dist.i) + dist.y)

= {definition of f }
f .x.y − 2dist.y

< {dist.y > 0}
f .x.y

Looking at the postcondition

{r : r = (# x, y : 0 ≤ x < N, 0 ≤ y < N : f .x.y = 0)}

we define the function

G.a.b = (# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)

and we will maintain the invariants:

P0 : G.0.0 = r + G.a.b
P1 : 0 ≤ a ≤ N
P2 : 0 ≤ b ≤ N

The initial values r, a, b := 0, 0, 0 satisfy the invariants and

a = N ∨ b = N ⇒ G.a.b = 0 ⇒ r = G.0.0

establishes the postcondition, so we can stop when a = N ∨ b = N.
So far we have

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, r : int;
a, b, r := 0, 0, 0;
do a ̸= N ∧ b ̸= N

S
od
{r : r = G.0.0}

]∥



4 uwe hoffmann

We need to increment a, b and maintain the invariants:

G.a.b
= {definition of G}

(# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split x = a}

G.(a + 1).b + (#y : b ≤ y < N : f .a.y = 0)
= { f is decreasing in second argument (1.1), and assume f .a.b < 0}

G.(a + 1).b

so f .a.b < 0 ⇒ G.a.b = G.(a + 1).b. Similarly

G.a.b
= {definition of G}

(# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split y = b}

G.a.(b + 1) + (#x : a ≤ y < N : f .x.b = 0)
= { f is increasing in second argument (1.1), and assume f .a.b > 0}

G.a.(b + 1)

so f .a.b > 0 ⇒ G.a.b = G.a.(b + 1). Also for the case f .a.b = 0 we have

r + G.a.b
= {definition of G}

r + (# x, y : a ≤ x < N, b ≤ y < N : f .x.y = 0)
= {range split x = a}

r + G.(a + 1).b + (#y : b ≤ y < N : f .a.y = 0)
= { f is decreasing in second argument (1.1), and assume f .a.b = 0}

(r + 1) + G.(a + 1).b

Our program becomes

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, r : int;
a, b, r := 0, 0, 0;
do a ̸= N ∧ b ̸= N

if
□ f .a.b > 0 → b := b + 1
□ f .a.b < 0 → a := a + 1
□ f .a.b = 0 → a, r := a + 1, r + 1
fi

od
{r : r = G.0.0}

]∥

We cannot have f in the program text so the last thing we have to do
is eliminate f . We do this by introducing a new variable c : int and



math notes - points on circle 5

maintaining the additional invariant P3 : c = f .a.b. Lemma 1.1 already
showed us the expressions for f when the first or the second argument
increase, so our final program looks like this3 3 The program is bound by the function

2N − a − b so it is O(N). The solution
is an example of the slope search tech-
nique.

∥[
con N : int; {N ≥ 4}

dist(i : 0 ≤ i < N) : int; {∀i : 0 ≤ i < N : dist.i > 0}
var a, b, c, r : int;
a, b, c, r := 0, 0, C, 0;
do a ̸= N ∧ b ̸= N

if
□ c > 0 → b, c := b + 1, c − 2dist.b
□ c < 0 → a, c := a + 1, c + 2dist.a
□ c = 0 → a, c, r := a + 1, 2dist.a, r + 1
fi

od
{r : r = G.0.0}

]∥



Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calcu-
lation of Programs. Springer-Verlag, 1990.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.


	Bibliography

