
Penn & Teller Full Deck of Cards

Counting words with constraints is the topic of the problem in
this note. This problem was posed by a coworker at a lunch discussion.

Problem

When you go see the Penn & Teller Magic Show in Las Vegas
you can get a random card from the Perfectly Ordinary Deck
of Cards at the entrance. How many times do you have to see
the show to collect the full deck.

We assume the supply of cards at the entrance is endless and thor-
oughly shuffled. This allows us to work with a probability model
of drawing with replacement where each card is equally likely to
be drawn with probability 1

52 . At each visit we draw a card1. Af- 1 You can get two cards at each visit to
the show in Las Vegas. Drawing only
one card is a simplification to keep the
expressions smaller. The case with two
cards is similar but the expressions get
a little bigger because you have more
cases of the card sequence right before
the visit that achieves full deck. We will
point out the differences at the end of
this note.

ter k visits we have built up a sequence of cards which we model
as a word wk = (c1, c2, . . . , ck) of size k from an alphabet of size 52
(∀ci : ci ∈ {1, . . . , 52}). Our random variable X is the number of visits
needed to achieve a full deck. The probability P(X = k) means that it
took k visits to achieve the full deck.

The key observation is this: if it took k visits to achieve full deck then
at visit k − 1 the corresponding word of cards wk−1 = (c1, c2, . . . , ck−1)

is missing just one card and all the other cards appear at least once in
the word2. 2 It might be easier to see this with a con-

crete card. Imagine you are drawing an
ace of spades at visit k and getting the
full deck. This means that before the
visit k you are still missing the ace of
spades. If not, then drawing the ace of
spades at visit k wouldn’t complete the
deck. Getting the full deck at visit k
also means that you are not missing any
other cards before the visit k, otherwise
if one of the other cards would be miss-
ing then drawing an ace of spades again
wouldn’t complete the deck.

Let A = {1, 2, . . . , 52} be our alphabet and Lk(A) = {(c1, c2, . . . , ck) :
∀i : 1 ≤ i ≤ k : ci ∈ A} the set of all the words of length k with letters
(cards) from the alphabet A. Let Mk(c) be the set of words of length k
where letter c does not occur in the word and every other letter occurs
at least once:

Mk(c) = {(c1, c2, . . . , ck) :(∀i : 1 ≤ i ≤ k : ci ∈ A ∧ ci ̸= c)∧
(∀d ∈ A \ {c} : ∃i : 1 ≤ i ≤ k : ci = d)}

2 uwe hoffmann

So now let us assume that at visit k we draw letter c and get the full
deck. From our previous argument above we know that then the word
wk−1 we built in the previous k − 1 visits has to be in Mk−1(c).

The probability that at visit k we draw letter c and get the full deck
is thus the probability of drawing card c times the probability that
wk−1 ∈ Mk−1(c). It follows that:

P(X = k) = ∑
c∈A

1
|A|

|Mk−1(c)|
|Lk−1(A)|

As we will see below, |Mk−1(c)| is the same for all cards c, so for
some fixed card c0 we have ∀c ∈ A : |Mk−1(c)| = |Mk−1(c0)|. Then

P(X = k) =
|Mk−1(c0)|
|Lk−1(A)| ∑

c∈A

1
|A| =

|Mk−1(c0)|
|Lk−1(A)|

We already know that

|Lk−1(A)| = |A|k−1

What is left to do to compute P(X = k) is count |Mk−1(c0)|. To
avoid carrying around the k − 1 we will count |Mk(c0)| instead and
adjust afterwards.

How do we compute |Mk(c0)| ? We have two constraints on the
words in wk = (c1, c2, . . . , ck) ∈ Mk(c0):

constraint C1 : ∀i : 1 ≤ i ≤ k : ci ∈ A ∧ ci ̸= c0

constraint C2 : ∀d ∈ A \ {c0} : ∃i : 1 ≤ i ≤ k : ci = d

Constraint C1 is easy to satisfy: we just use the alphabet without
letter c0: A1 = A \ {c0}.

For constraint C2 we could try to eliminate all the subsets of Lk(A1)

with words missing one letter from A1, all the subsets with words
missing two letters from A1 and so on all the way to subsets with
words missing all but one letter from A1. Something like this:

|Mk(c0)| = |Lk(A1)| − ∑
B⊂A1

|Lk(A1 \ B)|

math notes - penn & teller full deck of cards 3

But we have to be careful here. The subsets that we aim to eliminate
are not disjoint and this would lead to overcounting3. So instead the 3 Subsets with two missing letters are

also subsets with one missing letter.
Subsets with three missing letters are
also subsets with two missing letters
and subsets with one missing letter.
And so on. It is indeed a use case
for the inclusion-exclusion principle in
combinatorics:
Wikipedia. Inclusion–exclusion
principle — Wikipedia, the
free encyclopedia. http:

//en.wikipedia.org/w/index.php?

title=Inclusion%E2%80%93exclusion%

20principle&oldid=1086507513, 2022.
[Online; accessed 07-May-2022].

correct way to count this is:

|Mk(c0)| =
|A1|−1

∑
i=0

(−1)i ∑
B⊂A1,|B|=i

|Lk(A1 \ B)|

There are (|A1|
i) subsets B of size i and for each |Lk(A1 \ B)| =

(|A1| − i)k. It follows that

|Mk(c0)| =
|A1|−1

∑
i=0

(−1)i
(
|A1|

i

)
(|A1| − i)k

We have all the pieces now. We can adjust back to k − 1 and also
use |A| = 52 to make a nice, closed formula for P(X = k):

P(X = k) =
1

52k−1

50

∑
i=0

(−1)i
(

51
i

)
(51 − i)k−1

Plugging this into Mathematica we can see the distribution and the
cumulative distribution:

0 200 400 600 800 1000

0.002

0.004

0.006

0.008

0.010

http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
https://www.wolframcloud.com/obj/75d50b79-164a-4bed-a4b5-7592d2488169

4 uwe hoffmann

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

It looks like around 400 visits will most likely get you a full deck. It
might be cheaper to buy the full deck from the Penn & Teller online
store.

math notes - penn & teller full deck of cards 5

It is always a good idea to double-check our result with a simula-
tion4. The Python program below runs trials and records the number 4 This is how I discovered a bug in my

initial calculation. The listing is from my
coworker that suggested the problem.

of visits necessary for a full deck:

Listing 1.1: Simulation

import random

def t r i a l () :
cards = [Fa l se] * 52

v i s i t s = 0

while not a l l (cards) :
v i s i t s += 1

cards [random . randint (0 , 5 1)] = True
return v i s i t s

def main () :
num_tr ia ls = 100000

t r i a l s = [t r i a l () for _ in range (0 , num_tr ia ls)]
t r i a l s . s o r t ()
print (f "n={ num_tr ia ls } ")
print (f " p0 : { t r i a l s [0] } ")
print (f " p25 : { t r i a l s [num_tr ia ls >> 2] } ")
print (f " p50 : { t r i a l s [num_tr ia ls >> 1] } ")
print (f " p75 : { t r i a l s [(num_tr ia ls >> 2) * 3] } ")
print (f " p100 : { t r i a l s [num_tr ia ls − 1] } ")

i f __name__ == " __main__ " :
main ()

The results confirm that at least we are not orders of magnitude off:

n=100000

p0 : 95

p25 : 190

p50 : 225

p75 : 269

p100 : 822

As promised, what are the differences when two cards are drawn
at each visit. The constraints on the words right before the visit that
achieves full deck are a little bit more complicated: there could be one
or two cards missing. When one card is missing, the missing card
could come in once or twice on the last visit. That’s more or less
it. Working out a closed formula for this is left as an exercise to the
reader.

Bibliography

Wikipedia. Inclusion–exclusion principle — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=

Inclusion%E2%80%93exclusion%20principle&oldid=1086507513,
2022. [Online; accessed 07-May-2022].

http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513
http://en.wikipedia.org/w/index.php?title=Inclusion%E2%80%93exclusion%20principle&oldid=1086507513

	Bibliography

