Existence of *n*-th root

Proving the existence of N-th root is the topic of this note.

This note is an experiment in including PDF pages. The included PDF pages are scans of handwriting with a fountain pen. The proof is a modification of the proof of the existence of the square root from Chapter 2 of the *Lectures on Real Analysis* textbook¹ to the n-th root case.

¹ F. Lárusson. *Lectures on Real Analysis.* Australian Mathematical Society Lecture Series. Cambridge University Press, 2012. ISBN 9781107026780. URL https://books.google.com/books?id= koj-IrXXwocC

There is ser with
$$s'' = y$$
 for $y > 0$ and $n \ge 2$,
Proof:
lowink set $A = \int x \in \mathbb{R} : x^n < y \int$
 $0 \in A => A \neq \emptyset$
 $\forall x \in A : x < y => y$ upper bound
 $z > s := sup A$ exists
Claim : $s'' = y$
We show this by climinating the possibilities
 $s'' = y$, $s'' > y$
Assume $s'' < y$
We work worth expression $(s + \varepsilon)^n$
 $(s + \varepsilon)^n = \sum_{k=0}^n \binom{n}{k} s^{n-k} \in k$
 $= s'' + \varepsilon \cdot \sum_{k=1}^n \binom{n}{k} s^{n-k} \in k$
 $u \in will make subset that
 $0 < \varepsilon < 1$
 $z > (s + \varepsilon)'' < s'' + \varepsilon \cdot \sum_{k=1}^n \binom{n}{k} s^{n-k} \in k$
 $u \in will make subset that
 $0 < \varepsilon < 1$
 $z > (s + \varepsilon)'' < s'' + \varepsilon \cdot \sum_{k=1}^n \binom{n}{k} s^{n-k} \in k$
 $u \in will make subset that
 $0 < \varepsilon < 1$
 $z > (s + \varepsilon)'' < s'' + \varepsilon \cdot \sum_{k=1}^n \binom{n}{k} s^{n-k} \in k$
 $u \in will make subset float$
 $0 < \varepsilon < 1$$$$

r.

Now doore
$$E$$
 such that
 $0 \le E \le \min(1, \frac{y-s^n}{B})$
 $= > (s+E)^n \le s^n + E \cdot B \le s^n + \frac{y-s^n}{B} \cdot B = y$
 $= > s+E \in A$ (such codects $s = sup A$
Assume $s^n > y$
 W_L world world expression $(s-E)^n$
 $(s-E)^n \ge \frac{s^n}{B} \binom{n}{A} s^{n-k} (-E)^k$
 $\equiv s^n + \frac{E}{E} \binom{n}{A} s^{n-k} (-E)^k$
 $\equiv s^n + \frac{E}{k=1} \binom{n}{A} s^{n-k} E^k$
 $k \ge 0 \mod 2$
 $= \frac{n}{E} \binom{n}{k} s^{n-k} E^k$
 $k \ge 1 \mod 2$
 $= s^n - E \cdot \frac{E}{E} \binom{n}{K} s^{n-k} E^{k-1}$
Again , we make
 $s \le (s-E)^n > s^n - E \stackrel{N}{\ge} \binom{n}{K} s^{n-k}$
 $= (s-E)^n > s^n - E \stackrel{N}{\le} \binom{n}{K} s^{n-k}$
 $= (s-E)^n > s^n - E \stackrel{N}{\le} \binom{n}{K} s^{n-k}$

Nous nee choose & such that $= 7 (3-E)^{m} > 5^{m} - E \cdot C > 5^{m} - \frac{5^{m} \cdot y}{C} \cdot C = y$ => S-E is rysper bound of A 4 contradicts S= sup A So stay 個

Bibliography

F. Lárusson. Lectures on Real Analysis. Australian Mathematical Society Lecture Series. Cambridge University Press, 2012. ISBN 9781107026780. URL https://books.google.com/books?id= koj-IrXXwocC.