
No consecutive integers
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this note.

Problem

Determine the number of subsets of size k from set {1, 2, . . . , n}
that do not contain consecutive integers.

The number of subsets of size k from set {1, 2, . . . , n} (without any
constraints) is given by the binomial coefficient (n

k). Each subset of size
k can be represented as a word of length n from alphabet {⋆, 8} with k
8’s and n − k ⋆’s: if i is in the subset then the corresponding word has
a 8 at position i otherwise it has a ⋆ at position i. This representation
is clearly a bijection. The constraint of no consecutive integers in a
subset implies no adjacent 8’s in the corresponding word2. 2 For example given set {1, 2, 3, 4} the

subset {2, 4} corresponds to ⋆ 8 ⋆8.
The subset {1, 2} has consecutive inte-
gers and corresponds to 8 8 ⋆⋆. The
reason why we chose 8 to indicate in-
clusion into a subset will become clear
soon.

We will now associate words from {⋆, 8}n with other combinatorial
objects: the integer equations.

Definition 1.1. Given fixed integers m > 0 and t ≥ 0 a sequence
(z1, z2, . . . , zm) is an integer equation if ∀i : 1 ≤ i ≤ m : zi ∈ N0 and

m

∑
i=1

zi = t

The number t is called the target of the integer equation.

Note that these are sequences and order matters. From an integer
equation (z1, z2, . . . , zm) we construct a {⋆, 8}t+m−1 word in the fol-
lowing way: start with z1 number of ⋆’s, then a 8, then z2 number of
⋆’s, then a 8 and so on finishing with the zm number of ⋆’s which are
not followed by a 8. The word will contain exactly t ⋆’s and they will
need exactly m − 1 8 separators to know which stars belong to which
zi. It’s easy to verify that this encoding is also a bijection3. 3 As an example let m = 5 and target

t = 10. The sequence (1, 2, 1, 3, 3) is an
integer equation since

1 + 2 + 1 + 3 + 3 = 10

and it corresponds to the word

⋆ 8⋆⋆ 8⋆ 8⋆⋆⋆ 8⋆⋆⋆

This in turn corresponds to the subset
{2, 5, 7, 11} of set {1, . . . , 14}.
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Lemma 1.2. If we set t = n− k (the number of ⋆’s) and from t+m− 1 = n
we get m = k + 1 (the word length) then we can associate subsets of size k
from set {1, 2, . . . , n} with integer equations (z1, z2, . . . , zk+1) for target n −
k. The constraint of not having consecutive integers in the subsets translates
to integer equations (z1, z2, . . . , zk+1) where zi > 0 except for z1 and zk+1

(the first and the last in the sequence). This follows from the encoding not
allowing adjacent 8’s so there need to be ⋆’s separating the 8’s.

According to this association if we can count the number of integer
equations with all but the first and last zi strictly positive then we
also have the number of subsets with no consecutive integers. To get
there we will first count the number of anagrams, then the number of
multisets, then the number of integer equations and finally the number
of integer equations with all but the first and last zi strictly positive.
In what follows we will use n and k for other things before we bring it
back in the end to our initial problem.

Let’s start this journey with anagrams. Let {s1, s2, . . . , sk} be an
alphabet of distinct symbols. We can build words with these symbols,
for example s2s2s1s3s3s1. As a notational convenience sisisi . . . si = sj

i
if si appears j consecutive times in a word, so the example would be
s2

2s1s2
3s1.

Definition 1.3. A word is an anagram4 of sn1
1 sn2

2 . . . snk
k with ni > 0 4 For example given word a2b the words

aba and baa are anagrams of it. The word
abb is not.

if it is a word containing exactly ni number of si symbols for each
1 ≤ i ≤ k. We denote with A(sn1

1 sn2
2 . . . snk

k ) the set of all anagrams of
sn1

1 sn2
2 . . . snk

k .

Theorem 1.4. Given the set of anagrams A(sn1
1 sn2

2 . . . snk
k ) let n = ∑k

i=1 nk.
Then

|A(sn1
1 sn2

2 . . . snk
k )| =

(
n

n1, n2, . . . , nk

)
where ( n

n1,n2,...,nk
) is the multinomial coefficient5. 5 The multinomial coefficient is defined

as (
n

n1, n2, . . . , nk

)
=

n!

∏k
i=1 ni !

Proof. We have n positions in our word that we need to fill with sym-
bols. We are going to make the following choices: first we choose
n1 positions from those n positions where we fill in the symbol s1.
Then we choose the n2 positions from the remaining unfilled positions
where we fill in s2 and so on. In total we make k such choices and the
number of remaining unfilled positions at each stage is independent
of the previous choices, so the multiplication rule applies. For our first
symbol s1 we have ( n

n1
) possibilities, for our second symbol we have

(n−n1
n2

) possibilities and so on. Because of the multiplication rule the
total number of choices is the product of all these binomial coefficients,
so

|A(sn1
1 sn2

2 . . . snk
k )| =

k

∏
i=1

(
n − (∑i−1

j=1)

ni

)



math notes - no consecutive integers 3

Expanding6 the binomial coefficients on the right-hand side into fac- 6 After the binomial coefficients are ex-
panded the product becomes a telescop-
ing product that simplifies to exactly the
multinomial coefficient.

torials according to the binomial coefficient definition and simplifying
the expression gives us the desired result.

We move on to multisets. Informally multisets are sets (order does
not matter) where each element can appear more than once. So given a
set A (the alphabet) a multiset is a tuple of A together with a function
µ : A 7→ N that determines how often an element a ∈ A appears in the
multiset. For notational convenience we will use curly braces and list
elements (with exponents if they appear more than once). For example
{a2, b, c4} is a multiset where a appears twice, b once and c four times.
Note that order does not matter, so {a2, b, c4} is the same multiset as
{b, a2, c4}. The size of the multiset is the number of elements in it with
elements appearing more than once counted accordingly, so

|(A, µ)| = ∑
a∈A

µ(a)

Theorem 1.5. The number of multisets of size k from an alphabet set of size
n is7 7 For example with alphabet set {a, b}

the multisets of size two are {a2}, {b2},
{a, b}, so there are three of them.

(
k + n − 1

k

)
Proof. We will do an encoding of multisets to anagrams similar to what
we did at the beginning of this section with ⋆’s and 8’s. To avoid
confusion with that previous encoding in this proof we will use the
symbols ◦ and |.

Let A = {a1, a2, . . . , an} be our alphabet. For a multiset (A, µ) with
size k we define the following word8 with symbols {◦, |}: 8 The multisets from the previous exam-

ple would be encoded as follows:

{a2} 7→ ◦ ◦ |

{b2} 7→ | ◦ ◦
{a, b} 7→ ◦|◦

◦µ(a1)| ◦µ(a2) | . . . |◦µ(an)

The first circles denote how often a1 is in the multiset. They are sepa-
rated by a | from the circles that denote how often a2 is in the multiset
and so on. In total there are k circles because the multiset has size k
and there need to be n − 1 separators because the alphabet has size n
and the circles for each element need to be kept apart. It’s easy to see
that we have defined a bijection from the set of multisets of size k with
alphabet of size n to the set of anagrams A(◦k|n−1). From theorem
1.4 we already know how to count the size of A(◦k|n−1) and with the
bijection it proves this theorem.

Our next stop are the number of integer equations. Given m and t
how many integer equations (z1, z2, . . . , zm) for target t are there?

Theorem 1.6. The number of integer equations (z1, z2, . . . , zm) for target t
is (

t + m − 1
t

)
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Proof. We will associate a multiset with each integer equation9. The 9 For example with m = 5 and tar-
get t = 10 the integer equation
(1, 2, 1, 3, 3) would correspond to multi-
set {1, 22, 3, 43, 53}.

multiset will contain the element i zi many times, for 1 ≤ i ≤ m. Again
it can be checked that this defines a bijection. These multisets belong
to the set of multisets of size t from an alphabet of size m and theorem
1.5 counts them. By the bijection rule we have proven this theorem.

We are almost done. In the beginning of this section we encoded
our subsets without consecutive integers as integer equations with all
but the first and last summand strictly positive. So we need to count
these types of integer equations with this constraint.

Theorem 1.7. The number of integer equations (y1, y2, . . . , ym) for target t
with yi > 0 for all 1 < i < m is (

t + 1
m − 1

)
Proof. For an integer equation (y1, y2, . . . , ym) we have ∑m

i=1 yi = t and
yi > 0 for all 1 < i < m. So we can write

y1 +
m−1

∑
i=2

(yi − 1) + ym = t − (m − 2)

This shows that we can transform the integer equations with the strictly
positive constraints into normal integer equations without constraints
but with a new target. This again is a bijection. We know how to count
these from theorem 1.6. The new target is t − m + 2. Plugging it in we
get (

t − m + 2 + m − 1
m − 1

)
=

(
t + 1
m − 1

)

Using 1.7 and t = n − k and m = k + 1 as described by our associa-
tion 1.2 of subsets of size k without consecutive integers from set Nn to
integer equations with all but the first and last strictly positive terms,
we are finally able to solve the problem in this section. The answer is
(n−k+1

k ).
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