
Minkowski Sum & Well-spaced triples

Fast Fourier Transform and using it to speed up polynomial mul-
tiplication is the topic of the two problems1 in this note. 1 Jeff Erickson. Algorithms —

Extended Dance Remix: Fast
Fourier Transforms. https:

//jeffe.cs.illinois.edu/teaching/

algorithms/notes/A-fft.pdf, 2021.
[Online; accessed 07-May-2022]Problem

Given two sets of integers X ⊂ Z and Y ⊂ Z, compute the size
of the Minkowski sum: X + Y = {x + y : x ∈ X, y ∈ Y} in
O(n log n) time.

Solution. A pretty straightforward way of calculating the Minkowski
sum is to generate all possible pairs (that is a nested loop, so O(n2))
and then also making sure the resulting values form a set, so only
occur once. This can be achieved by storing the values as we go in a
balanced binary search tree. For each value the cost would be O(log n),
so the straightforward solution has a runtime of O(n2 log n) if using a
binary search tree or O(n2) if using a hashtable.

Can we do better? This problem is an exercise in the FFT chapter of
Jeff Erickson’s Algorithms book. So the answer is: yes we can. To do
so, we remember that multiplying two polynomials given in coefficient
form can be done in O(n log n) using the Fast Fourier Transform.

But what polynomials should we consider? Let’s explore polyno-
mial multiplication with a couple of examples:

(1 + x)(x2 + x5) = 1(x2 + x5) + x(x2 + x5)

= x2 + x5 + x3 + x6

(2x + x4)(1 + 3x3) = 2x(1 + 3x3) + x4(1 + 3x3)

= 2x + 6x4 + x4 + 3x7

Notice how we multiplied each monomial2 from the first polyno- 2 A monomial is an individual term of
a polynomial A polynomial is a sum of
monomials. In our example the mono-
mials of 1 + x are 1 and x. The monomi-
als of x2 + x5 are x2 and x5.

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf


2 uwe hoffmann

mial with each mononial from the second polynomial. In the second
example it is also visible that we haven’t yet collected together all the
monomials of degree four of the multiplication result to better demon-
strate that each monomial from the first polynomial is multiplied with
each monomial from the second polynomial.

When we multiply two monomials, their coefficients get multiplied
and their exponents get added. Each monomial from one polynomial
is paired with each monomial from the other polynomial in an oper-
ation (multiplication) and in that operation the exponents are added.
This strongly suggests3 that we should define a polynomial from one 3 In the problem each member of the first

set is paired with each member of the
second set in an operation (addition).

of the given sets of integers by making the members of the set be the
exponents of the monomials that form the polynomial.

For example: if X = {2, 5, 6} then the corresponding polynomial
could be x2 + x5 + x6. The polynomial coefficients have been arbitrarily
chosen to all be one 4. 4 There is one small wrinkle in this

scheme. In the problem the given sets
are sets of integers, so they can be neg-
ative. We cannot have monomials with
negative exponents. For now let us as-
sume X and Y only contain non-negative
integers with the promise that at the end
of this solution we will address how to
drop this assumption.

Thus we define the two polynomials pX(x) and pY(x) from the
given integer sets X and Y:

pX(x) = ∑
i∈X

xi

pY(x) = ∑
j∈Y

xj

and we multiply them

pX(x)pY(x) = ∑
i∈X

∑
j∈Y

xi+j

The exponents of the monomials of the polynomial product are the
members of the Minkowski sum X + Y. The size of X + Y is the num-
ber of monomials 5. 5 As promised: what can we do when X

and Y contain negative integers. Let d >
0 be a constant such that both d + X =
{d + a : a ∈ X} and d + Y = {d + b : b ∈
Y} have only non-negative members.

We define the polynomials slightly dif-
ferently:

pX(x) = ∑
i∈X

xi+d

pY(x) = ∑
j∈Y

xj+d

and we multiply them

pX(x)pY(x) = ∑
i∈X

∑
j∈Y

xi+j+2d

Again, the size of X + Y is the number
of monomials.

This gives us a way to calculate the size of X + Y in O(n log n) be-
cause we can do the polynomial multiplication using FFT in O(n log n).

Problem

Given is a bit string B[1 . . . n]. A well-spaced triple is a triple
(i, j, k) of indices such that 1 ≤ i < j < k ≤ n and B[i] = B[j] =
B[k] = 1. Detect in O(n log n) time if bit string B contains a
well-spaced triple.

Solution. Again the brute-force solution is easy to describe: for each
middle index in the triple we consider all possible distances to left



math notes - minkowski sum & well-spaced triples 3

and right indices and check the condition. This is a nested loop with
runtime O(n2).

We will try to improve on the brute-force by again employing poly-
nomial multiplication even though it is not an obvious choice. After
all we are only given one bit string, not two bit strings and multipli-
cation needs two operands. But maybe we can derive a polynomial
from the bit string and then square that polynomial which would be a
polynomial multiplication.

Let’s explore what would happen if we use the given bit string B
directly as a coefficient vector of a polynomial

pB(x) =
n−1

∑
i=0

B[i + 1]xi

Squaring pB(x) we get

(pB(x))2 = pB(x)pB(x)

= (
n−1

∑
i=0

B[i + 1]xi)(
n−1

∑
j=0

B[j + 1]xj)

=
n−1

∑
i=0

n−1

∑
j=0

B[i + 1]B[j + 1]xi+j

For all 0 ≤ j < n monomial xj is present in pB(x) if B[j + 1] = 1.
If monomial xj is present in pB(x) then monomial x2j is present in
(pB(x))2. This is because monomial xj pairs with itself in the polyno-
mial multiplication. So the coefficient of monomial x2j in (pB(x))2 is
at least one (namely B[j + 1]B[j + 1] = 1). Can it be larger than one?
It would mean that some other monomial pairing has exponent sum
equal to 2j. Let i and k be the two indices for which B[i + 1] = 1,
B[k + 1] = 1 and i + k = 2j. But i + k = 2j is equivalent to k − j = j − i
which means that (i, j, k) form a well-spaced triple. This (i, k) mono-
mial pairing appears twice in the polynomial multiplication (once for
monomial xi from the left and monomial xk from the right and once
reversed with monomial xk from the left and monomial xi from the
right). That means that the well-spaced triple contributes the value
two to the coefficient of x2j in (pB(x))2 and we have found our criteria
for detecting well-spaced triples: if (pB(x))2 has any monomials with
even degree and coefficients greater or equal to three, then B has a
well-spaced triple.

This gives us a way to detect well-spaced triples in O(n log n) be-
cause we can do the polynomial multiplication using FFT in O(n log n).



Bibliography

Jeff Erickson. Algorithms — Extended Dance Remix: Fast
Fourier Transforms. https://jeffe.cs.illinois.edu/teaching/

algorithms/notes/A-fft.pdf, 2021. [Online; accessed 07-May-
2022].

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf
https://jeffe.cs.illinois.edu/teaching/algorithms/notes/A-fft.pdf

	Bibliography

