Maximum subsequence

Problem

Given a sequence of integer numbers $x_{0}, x_{1}, \ldots, x_{N-1}$ (not necessarily positive) find a subsequence x_{i}, \ldots, x_{j-1} such that the sum of numbers in it is maximum over all subsequences of consecutive elements.

We adopt the same notation used in Programming in the 1990 s 1 and Programming, The Derivation of Algorithms ${ }^{2}$: The notation of function application is the "dot" notation with name of function, followed by arguments, each separated by a dot. The notation of quantified expressions has the operator followed by the bounded variables, then a colon followed by the range for the bounded variables and ended with a colon and the actual expression. So

$$
\left(\sum k: i \leq k<j: x_{k}\right)
$$

corresponds to the more classical mathematical notation $\sum_{k=i}^{j-1} x_{k}$.
For our derivation steps in predicate calculus we will use the following notation:

$$
\begin{aligned}
& A \\
&=\{\text { reason why A equals } B\} \\
& B \\
& \leq\{\text { reason why } B \text { is less than } C\} \\
& C
\end{aligned}
$$

If all the numbers are positive then the maximum sum is the sum of the whole initial sequence. If all the numbers are negative then the maximum sum is o (by definition o is the sum over an empty range). So the interesting case is a sequence with positive and negative numbers in it.

We hope to find an algorithm that visits every number in the sequence only once, so with runtime $O(n)$. Let's introduce some nota-

[^0]tion: Let's introduce some notation ${ }^{3}$:
${ }^{3}$ Our problem can be stated as finding $f . N$ given $x_{i} \in \mathbb{Z}, 0 \leq i<N, N \in \mathbb{N}$.
$$
f . n=(M A X i, j: 0 \leq i \leq j \leq n: s . i . j)
$$
with
$$
\text { s.i. } j=\left(\sum k: i \leq k<j: x_{k}\right)
$$

We will use properties of quantified expressions as covered in Chapter 3 of Programming in the 1990s ${ }^{4}$.

$$
\begin{aligned}
& f . N \\
= & <\text { definition of } \mathrm{f}> \\
& (M A X i, j: 0 \leq i \leq j \leq N: \text { s.i.j }) \\
= & <\text { range nesting }> \\
& (M A X j: 0 \leq j \leq N:(M A X i: 0 \leq i \leq j: \text { s.i.j })) \\
= & <\text { defining } p \cdot j=(M A X i: 0 \leq i \leq j: \text { s.i.j })> \\
& (M A X j: 0 \leq j \leq N: p . j) \\
= & <\text { range split, 1-point rule }> \\
& (M A X j: 0 \leq j<N: p . j) \max p \cdot N \\
= & <\operatorname{definition~of~} \mathrm{f}> \\
& f .(N-1) \max p . N
\end{aligned}
$$

${ }^{4}$ Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990

We now have a recursive expression for f, which still depends on a newly introduced function p . Let's see if we can get a recursive expression for p too:

$$
\begin{aligned}
& p \cdot N \\
= & <\text { definition of } \mathrm{p}> \\
& (M A X i: 0 \leq i \leq N: \text { s.i.N }) \\
= & <\text { range split, 1-point rule }> \\
& (M A X i: 0 \leq i<N: \text { s.i.N }) \max \text { s.N. } N \\
= & <\text { definition of } \mathrm{s} \text { and s.N.N }=\mathrm{o} \text { by definition of sum over empty range }> \\
& \left(M A X i: 0 \leq i<N:\left(\sum k: i \leq k<N: x_{k}\right)\right) \max 0 \\
= & <\text { range split in sum }> \\
& \left(M A X i: 0 \leq i<N:\left(\sum k: i \leq k<N-1: x_{k}\right)+x_{N-1}\right) \max 0 \\
= & <+ \text { distributes over max }> \\
& \left(x_{N-1}+\left(M A X i: 0 \leq i<N:\left(\sum k: i \leq k<N-1: x_{k}\right)\right) \max 0\right. \\
= & <\text { definition of } \mathrm{p}> \\
& \left(x_{N-1}+p \cdot(N-1)\right) \max 0
\end{aligned}
$$

So $f . N=f .(N-1) \max p . N$ and $p \cdot N=\left(x_{N-1}+p \cdot(N-1)\right) \max 0$.
The base cases are $f .0=0$ and $p .0=0$.
Armed with these recursive relations we can provide a Haskell program that solves the problem:

Listing 1.1: Haskell code

```
maxSum :: [Int] -> (Int, Int)
maxSum (x:xs) = let (a, b) = maxSum xs
        c = x + b
    in (max c (max a o), max coo)
maxSum [] = (o, o)
```

The maxSum function calculates the tuple (f.N, p.N).

Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990.
A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall, 1990.

[^0]: ${ }^{1}$ Edward Cohen. Programming in the 1990s, An Introduction to the Calculation of Programs. Springer-Verlag, 1990
 ${ }^{2}$ A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall, 1990

