Maximum subsequence

Given a sequence of integer numbers xg, x1, ..., xy—1 (not nec-

essarily positive) find a subsequence x;,...,x; 1 such that the
sum of numbers in it is maximum over all subsequences of con-
secutive elements.

We adopt the same notation used in Programming in the 1990s * and
Programming, The Derivation of Algorithms®: The notation of function
application is the "dot" notation with name of function, followed by
arguments, each separated by a dot. The notation of quantified ex-
pressions has the operator followed by the bounded variables, then a
colon followed by the range for the bounded variables and ended with
a colon and the actual expression. So

(Y k:i<k<j:x)

corresponds to the more classical mathematical notation Z{(j Xk
For our derivation steps in predicate calculus we will use the following
notation:

A
= {reason why A equals B
y q
B

< {reason why B is less than C}
C

If all the numbers are positive then the maximum sum is the sum
of the whole initial sequence. If all the numbers are negative then the
maximum sum is o (by definition o is the sum over an empty range). So
the interesting case is a sequence with positive and negative numbers
in it.

We hope to find an algorithm that visits every number in the se-
quence only once, so with runtime O(n). Let’s introduce some nota-

"Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

> A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990



2 UWE HOFFMANN

tion: Let’s introduce some notation3 : 3Our problem can be stated as finding
f.Ngivenx; € Z,0<i<N,NeN.

fn=(MAXi,j:0<i<j<n:sij)
with
s.i.j:(Zk:i§k<j:xk).

We will use properties of quantified expressions as covered in Chap-

ter 3 of Programming in the 1990s%. +Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
f N Programs. Springer-Verlag, 1990

= < definition of f >
(MAXi,j:0<i<j<N:sij)

= < range nesting >
(MAXj:0<j< N:(MAXi:0<i<j:s.ij))

= < defining p.j = (MAXi:0<i<j:sij)>
(MAXj:0<j<N:p,j)

= < range split, 1-point rule >
(MAXj:0<j<N:pj)max p.N

= < definition of f >
f.(N—1) max p.N

We now have a recursive expression for f, which still depends on
a newly introduced function p. Let’s see if we can get a recursive
expression for p too:

p.N
= < definition of p >
(MAXi:0<i< N:siN)
= < range split, 1-point rule >
(MAXi:0<i< N:s.i.N) max s.N.N
= < definition of s and s.N.N = o by definition of sum over empty range >
(MAXi:0<i<N:(Lk:i<k<N:xg)) max0
= < range split in sum >
(MAXi:0<i<N:(Ck:i<k<N-1:x)+xN_1) max 0
= < + distributes over max >
(xn1+ (MAXi:0<i<N:(Lk:i<k<N-1:x)) max0
= < definition of p >
(xn—1+p.(N—1)) max 0

So f.N = f.(N —1) max p.N and p.N = (xy_1 + p.(N — 1)) max 0.
The base cases are f.0 =0 and p.0 = 0.

Armed with these recursive relations we can provide a Haskell pro-
gram that solves the problem:

Listing 1.1: Haskell code




maxSum ::

maxSum (x:xs) = let

maxSum [] = (o, o)

[Int] —> (Int, Int)

(a, b) = maxSum xs
c=x+Db

in (max ¢ (max a 0), max c o)

MATH NOTES - MAXIMUM SUBSEQUENCE 3

The maxSum function calculates the tuple (f.N, p.N).



Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calcu-
lation of Programs. Springer-Verlag, 1990.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.



	Bibliography

