
Maximum subsequence

Problem

Given a sequence of integer numbers x0, x1, . . . , xN−1 (not nec-
essarily positive) find a subsequence xi, . . . , xj−1 such that the
sum of numbers in it is maximum over all subsequences of con-
secutive elements.

We adopt the same notation used in Programming in the 1990s 1 and 1 Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

Programming, The Derivation of Algorithms2: The notation of function

2 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

application is the "dot" notation with name of function, followed by
arguments, each separated by a dot. The notation of quantified ex-
pressions has the operator followed by the bounded variables, then a
colon followed by the range for the bounded variables and ended with
a colon and the actual expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the following
notation:

A
= {reason why A equals B}

B
≤ {reason why B is less than C}

C

If all the numbers are positive then the maximum sum is the sum
of the whole initial sequence. If all the numbers are negative then the
maximum sum is 0 (by definition 0 is the sum over an empty range). So
the interesting case is a sequence with positive and negative numbers
in it.

We hope to find an algorithm that visits every number in the se-
quence only once, so with runtime O(n). Let’s introduce some nota-

2 uwe hoffmann

tion: Let’s introduce some notation3 : 3 Our problem can be stated as finding
f .N given xi ∈ Z, 0 ≤ i < N, N ∈ N.

f .n = (MAXi, j : 0 ≤ i ≤ j ≤ n : s.i.j)

with
s.i.j = (∑ k : i ≤ k < j : xk).

We will use properties of quantified expressions as covered in Chap-
ter 3 of Programming in the 1990s4. 4 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990f .N

= < definition of f >

(MAXi, j : 0 ≤ i ≤ j ≤ N : s.i.j)
= < range nesting >

(MAXj : 0 ≤ j ≤ N : (MAXi : 0 ≤ i ≤ j : s.i.j))
= < defining p.j = (MAXi : 0 ≤ i ≤ j : s.i.j) >

(MAXj : 0 ≤ j ≤ N : p.j)
= < range split, 1-point rule >

(MAXj : 0 ≤ j < N : p.j) max p.N
= < definition of f >

f .(N − 1) max p.N

We now have a recursive expression for f , which still depends on
a newly introduced function p. Let’s see if we can get a recursive
expression for p too:

p.N
= < definition of p >

(MAXi : 0 ≤ i ≤ N : s.i.N)

= < range split, 1-point rule >

(MAXi : 0 ≤ i < N : s.i.N) max s.N.N
= < definition of s and s.N.N = 0 by definition of sum over empty range >

(MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N : xk)) max 0
= < range split in sum >

(MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N − 1 : xk) + xN−1) max 0
= < + distributes over max >

(xN−1 + (MAXi : 0 ≤ i < N : (∑ k : i ≤ k < N − 1 : xk)) max 0
= < definition of p >

(xN−1 + p.(N − 1)) max 0

So f .N = f .(N − 1) max p.N and p.N = (xN−1 + p.(N − 1)) max 0.
The base cases are f .0 = 0 and p.0 = 0.

Armed with these recursive relations we can provide a Haskell pro-
gram that solves the problem:

Listing 1.1: Haskell code

math notes - maximum subsequence 3

maxSum : : [Int] −> (Int , Int)

maxSum (x : xs) = l e t (a , b) = maxSum xs
c = x + b

in (max c (max a 0) , max c 0)

maxSum [] = (0 , 0)

The maxSum function calculates the tuple (f .N, p.N).

Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calcu-
lation of Programs. Springer-Verlag, 1990.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.

	Bibliography

