
Devil’s chessboard

Hamming codes are used to solve the problem1 in this note. 1 Michael Tong. Devil’s chess-
board. 2013. URL https:

//brilliant.org/discussions/thread/

the-devils-chessboard/

You, your friend, and the Devil play a game. You and the Devil
are in the room with a chess board with 64 tokens on it, one on each
square. Meanwhile, your friend is outside of the room. The token can
either be on an up position or a down position, and the difference in
position is distinguishable to the eye. The Devil mixes up the positions
(up or down) of the tokens on the board and chooses one of the squares
and calls it the magic square. Next, you may choose one token on a
square and flip its position. Then, your friend comes in and must
guess what the magic square was by looking on the squares on the
board.2 2 Details:

1. You may flip a token. As in, you are
not forced to flip a token; you may
choose to not flip a token.

2. You can’t just tell your friend what
square it is. Or point to it. Or text
him it. Or... you get the point.

3. Your friend knows the strategy as
well (you tell him beforehand).

4. If you don’t get it right, the Devil
takes your soul. High stakes.

Problem

Show that there is a winning strategy such that your friend can
always know what square the magic square is.

There might be solutions that exploit the chessboard geometry with
its black and white fields. We will ignore the chessboard angle though
and use this problem as an excuse to dive into the topic of linear codes.
We will solve the problem by treating the token information as a 64-bit
word and we will devise a winning strategy that involves a Hamming3

3 Richard Hamming was one of the
founders of modern coding theory.
http://en.wikipedia.org/wiki/

Richard_Hamming

code (a type of perfect linear code).
But first lets introduce linear codes. We operate in the field Fq of

integers modulo a prime q.

Definition 1.1. A linear code C of words of length n is a subspace of
the vector space Fn

q . Let dim C = k, then we say that C is a [n, k]q linear
code.

Given a basis {c1, c2, . . . , ck} of C, we can build a matrix G ∈ Fk×n
q

using the ci basis vectors as rows. Then C is the row space of G and G
is called a generator matrix of C. We have4

4 We treat vectors as row vectors in this
section. That means that x ∈ Fk

q is a ma-
trix F1×k

q .

https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/
http://en.wikipedia.org/wiki/Richard_Hamming
http://en.wikipedia.org/wiki/Richard_Hamming

2 uwe hoffmann

C = {xG : x ∈ Fk
q},

so a code C is made from all linear combinations of the row vectors of
its generator matrix.

Let G′ be the row reduced echelon form of G. By definition G has
full row rank, so G′ has only nonzero rows. If G′ = [Ik | Ak×(n−k)] for
identity matrix Ik and some matrix A then the generator matrix G′ is
in standard form5. Row operations preserve the row space, so G′ also 5 Not every generator matrix can be row

reduced to the standard form. For exam-
ple [

1 1 0 0
0 0 1 1

]
cannot.

generates C.

Definition 1.2. Given a [n, k]q linear code C, matrix H ∈ F
(n−k)×n
q is a

parity check matrix for C, if C = nullspace(H) = {c ∈ Fn
q : HcT = 0}.

Theorem 1.3. Given a [n, k]q linear code C and a generator matrix G =

[Ik | Ak×(n−k)] for C in standard form, then H =
[
−AT

(n−k)×k | In−k
]

is a parity
check matrix6 for C. 6 With G in standard form this theorem

let’s us construct a parity check matrix
very easily. Also worth noting that in
standard form we generate a code word
from a message x ∈ Fk

q by appending
n − k parity check bits to the message
with xG. We check if the transmitted
and received word y ∈ Fn

q is a valid code
word by verifying HyT = 0. If true then
the first k positions of y are the original
message x.

Proof. Let c ∈ C be a code word from C. Then there exists an x ∈ Fk
q

such that c = xG. We have

HcT = H(xG)T

=
[
−AT

(n−k)×k|In−k

] (
x
[

Ik|Ak×(n−k)

])T

=
[
−AT

(n−k)×k|In−k

] [Ik

AT
(n−k)×k

]
xT

= (−AT + AT)xT

= 0

This means that C ⊆ nullspace(H). We have dim C = k and

dim nullspace(H) = n − rank(H) = n − n + k = k,

so C = nullspace(H) and H is a parity check matrix for C.

What can we do if the generator matrix is not in standard form?
Swapping columns in the generator matrix does not preserve the row
space, so the linear code generated with the modified matrix is clearly
not the same as the original code, but it is an equivalent code7. 7 A [n, k1]q linear code C1 is equivalent to

a [n, k2]q linear code C2 if there is a per-
mutation π ∈ Sn such that when π is ap-
plied to the coordinate indices of all the
code words from C1, it produces all the
code words from C2. Equivalent linear
codes have the same dimension k1 = k2.

Definition 1.4. The Hamming distance d(x, y) between two vectors
x, y ∈ Fn

q is the number of positions in which the vectors differ. With
x = x1x2 . . . xn and y = y1y2 . . . yn we have

d(x, y) = |{i : 1 ≤ i ≤ n : xi ̸= yi}|

math notes - devil’s chessboard 3

The Hamming weight w(x) is the number of positions that differ from
zero:

w(x) = |{i : 1 ≤ i ≤ n : xi ̸= 0}| = d(x, 0)

We will use the following properties of Hamming distances: Proof of Lemma 1.5
The first three properties are obvious
from the definition of Hamming dis-
tance. For the last property let i be an
index where x and y differ, so xi ̸= yi .
For vector z we can have the following
cases for position i:

zi = xi ⇒ zi ̸= yi

zi = yi ⇒ zi ̸= xi

zi ̸= xi ∧ zi ̸= yi

In each of these cases the contribution
of zi to d(x, z) + d(z, y) is at least one,
whereas on the left side position i con-
tributes one to d(x, y). A similar analysis
holds for indices i where xi = yi .

Lemma 1.5.

∀x, y ∈ Fn
q : d(x, x) ≥ 0

∀x, y ∈ Fn
q : d(x, y) = 0 ⇔ x = y

∀x, y ∈ Fn
q : d(x, y) = d(y, x)

∀x, y, z ∈ Fn
q : d(x, y) ≤ d(x, z) + d(z, y)

Definition 1.6. The minimum distance of C is:

d(C) = min{d(x, x′) : x, x′ ∈ C ∧ x ̸= x′} = min{w(x) : x ∈ C}

The minimum distance is important enough that we add it to the
characteristic notation of a linear code: [n, k, d]q is a linear code over
field Fq with bit strings of length n, code dimension k and minimum
distance between code words d.

The next lemma establishes a connection between the minimum dis-
tance of a linear code and one of its parity check matrix.

Lemma 1.7. The minimum distance of a code C equals the minimum number
of linearly dependent columns in one of its parity check matrices.

Proof of Lemma 1.7
Let H be a parity check matrix of
[n, k, d]q linear code C. There must be
a code word c with w(c) = d. c belongs
to the nullspace of H, so

HcT = 0

But HcT is a linear combination of col-
umn vectors of H, with d nonzero co-
efficients, so the column vectors in this
linear combination are linearly depen-
dent.

So far we have worked with fields Fq of any prime q. Now we
switch to the binary world q = 2 and F2. Our vectors are bit strings.
We transmit these bit strings over a binary symmetric channel.

Definition 1.8. In a binary symmetric channel each bit sent has the
same probability p < 1

2 of being received incorrectly.

We send a code word x ∈ C from a [n, k]2 linear code C over a
binary symmetric channel and receive a bit string y. If there were no
transmission errors, then y = x. If there were errors, we want to find
the most likely code word x that was transmitted given the errors in y.

One decoding strategy8 would be to choose a code word x with 8 Finding an appropriate code word for
the transmitted bit string is called decod-
ing. Finding the most likely code word
is called maximum likelihood decoding.

minimum Hamming distance over all code words from C to received
bit string y. This type of decoding is called nearest neighbor decoding.
The chosen x is not always unique.

Theorem 1.9. In a binary symmetric channel with error probability p < 1
2

the nearest neighbor decoding is a maximum likelihood decoding.

Proof. Given a bit string y ∈ Fn
2 received through the channel, let Py(x)

be the probability that the code word x was sent when y was received.
Because the channel is a binary symmetric channel, we have

4 uwe hoffmann

Py(x) = pd(x,y)(1 − p)n−d(x,y)

Consider two code words x and x′ such that d(x, y) ≤ d(x′, y).
Because p < 1

2 , we then have Py(x) ≥ Py(x′). It follows that

max
x∈C

Py(x) = min
x∈C

d(x, y)

so the likeliest code word is the nearest neighbor to y.

For the rest of this section we use nearest neighbor decoding. We
want to know if we can detect and possibly correct a transmission with
errors. Let’s define clearly what we mean by that. A transmission is a
pair (x, y) ∈ C × Fn

2 , where a code word x was sent and a bit strings y
was received. It has d(x, y) transmission errors. The nearest neighbor
decoding nnd(y) finds a code word (not necessarily unique) closest to
y. The following holds by definition:

d(y, nnd(y)) = min
c∈C

d(y, c)

If no errors occurred in the transmission, then x = y and also
d(x, y) = 0 and nnd(y) = x. If errors in the transmission occurred
we want to:

E.1 detect that errors happened, i.e. establish that y /∈ C.

E.2 correct the errors, i.e. establish nnd(y) = x.

The next theorem describes the conditions for E.1.

Theorem 1.10. Given a [n, k, d]2 linear binary code C, we can detect that
any transmission with up to e errors was erroneous if and only if d > e.

Proof. (⇒) Let (x, y) be a transmission with d(x, y) ≤ e < d errors.
Assume y ∈ C. Then d(x, y) ≤ e < d is a contradiction to d being the
minimal distance of C. It follows that y /∈ C.
(⇐) We can detect that any transmission with up to e errors was erro-
neous. Assume d ≤ e. Then there exist two code words x ̸= x′ such
that d(x, x′) ≤ e. Now consider transmission (x, x′). It’s impossible to
detect that it had errors because x′ is a code word. This is a contradic-
tion with the fact that we can detect that any transmission with up to
e errors was erroneous. So d > e.

c1

c2

c3

c4

x

y

z

e

e
e

e

Figure 1.1: A Hamming sphere for code
word c with radius e is the set
{x : d(x, c) ≤ e}. In this figure the
spheres don’t overlap, so vectors (blue
dots) that fall within a sphere can be
error-corrected to code words (red dots).

For E.2 we have this theorem:

Theorem 1.11. Given a [n, k, d]2 linear binary code C, we can correct any
transmission with up to e errors if d > 2e.

math notes - devil’s chessboard 5

Proof. Let (x, y) be a transmission with d(x, y) ≤ e errors and d > 2e.
Assume nnd(y) ̸= x. Then d(y, nnd(y)) ≤ e (otherwise x would be
closer than nnd(y) to y). We have

d(x, nnd(y)) ≤ d(x, y) + d(y, nnd(y)) ≤ e + e = 2e

which contradicts d > 2e. So nnd(y) = x.

Theorems 1.10 and 1.11 tell us that a large minimum distance d(C)
allows us to detect and correct more errors. But a large minimum
distance between code words also limits the number of code words.
The following theorem puts an upper bound on the number of code
words given a minimum distance.

Theorem 1.12. Given a [n, k, 2t + 1]2 linear binary code C, we have

|C| ≤ 2n

∑t
i=0 (

n
i)

This upper bound is called Hamming bound.

Proof. Given a bit string x and an integer i ≤ n, there are (n
i) ways to

choose the i positions at which x and and another bit string y differ.
So there are (n

i) bit strings y with d(x, y) = i. This means there are

t

∑
i=0

(
n
i

)
bit strings y with d(x, y) ≤ t.

On the other hand, a bit string y with d(y, x) ≤ t to a code word x
cannot have the same d(y, x′) ≤ t to a different code word x′ because
then

d(x, x′) ≤ d(x, y) + d(y, x′) ≤ t + t ≤ 2t

which is a contradiction to d(C) = 2t + 1.
So for each code word, we have at most ∑t

i=0 (
n
i) bit strings with

Hamming distance ≤ t and we cannot have the same bit strings near
two different code words. We have 2n bit strings, so

|C|
t

∑
i=0

(
n
i

)
≤ 2n

A binary linear code that achieves equality in the Hamming bound
1.12 is called a perfect code.

We are now ready to define Hamming codes.

6 uwe hoffmann

Definition 1.13. A Hamming code Hr of order r (where r is a posi-
tive integer) is a binary linear code with the parity check matrix with
columns that are all the 2r − 1 nonzero bit strings of length r.

Changing the order of the columns in the parity check matrix pro-
duces equivalent codes with the same minimum distance. So for easier
analysis we now consider Hamming codes with parity check matrix in
standard form, ie the last r columns form the identity matrix Ir, so
H = [Ar×(n−r) | Ir], with n = 2r − 1. From theorem 1.3 we then know
the generator matrix is G =

[
In−r | −AT

(n−r)×r

]
=

[
In−r | AT

(n−r)×r

]
, since

we operate in F2. We can see that dimHr = n − r. What is the mini-
mum distance of Hr? All columns are nonzero and distinct, so no two
columns are linearly dependent9. But consider the linear combination 9 Again, this is in F2. The sum of two

distinct columns is always nonzero, so
a linear combination that is zero has to
have coefficients zero, hence linearly in-
dependent.

of the three columns

[1, 1, 0, . . . , 0]T + [1, 0, 0, . . . , 0]T + [0, 1, 0, . . . , 0]T = 0T

They are linearly dependent. From lemma 1.7 it follows that d(Hr) =

3, so Hr is a [2r − 1, 2r − 1 − r, 3]2 binary linear code. According to
theorem 1.11 it can correct transmissions with one error.

Theorem 1.14. Hr is a perfect code.

Proof. The generator matrix has full row rank, so we need all linear
combinations of the rows to get all the code words. This are binary
words, so there are 2n−r distinct linear combinations. It means |Hr| =
2n−r.

Inserting into formula of theorem 1.12, we get10 10 With t = 1, because d(Hr) = 3.

2n−r
1

∑
i=0

(
n
i

)
= 2n−r(1 + n) = 2n−r(1 + 2r − 1) = 2n−r2r = 2n

This concludes our dive into linear codes and Hamming codes. Let’s
return to our problem and solve it using Hamming codes. The state
of the chessboard is a binary word of length 64. We use r = 6, so
Hamming code H6. The word length is 26 − 1 = 63. We agree that
the devil choosing bit 64 is a special case which we handle later. For
now imagine the chessboard as a 63-bit binary word and the devil only
choosing a magic field between 1 and 63.

math notes - devil’s chessboard 7

The winning strategy can be summarized as follows: the first player
needs to modify the 63-bit word (by flipping at most one bit) in such
a way that the magic field is the one bit error of a code word in H6.
Then the second player only has to come in, decode11 the modified 11 Decoding is done as follows: x needs

to be decoded. It is one bit away from
a code word c with error at bit k. Let
ek be the unit vector with bit k set. So
x = c + ek and

Hx = H(c + ek) = Hek

Since ek is be the unit vector with bit
k set, Hek is column k from the parity
check matrix H. To decode we calculate
Hx and look to see which column in H
the result is. To save the lookup step we
can be even more elegant. Instead of the
parity check matrix in standard form, we
choose a parity check matrix where col-
umn k is the bit representation of k. In-
stead of lookup we just reverse the bit
representation back to the integer k.

chessboard and point to the corrected error which is the same magic
field.

Is this always possible? We know that Hamming codes are perfect
codes, so any 63-bit word is at most one bit away from a code word.
We have the following cases for the initial state of the chessboard:

• It happens to be a code word in H6. Then the first player flips the
magic field bit, producing an error there.

• It happens to be a 63-bit word that is a one bit error at the magic
field. The first player doesn’t flip any bit in this case.

• It happens to be a 63-bit word with a one bit error different from
the magic field.

The last case needs a little thinking. Assume H is the parity check
matrix for our H6 Hamming code and assume the state of the chess-
board is x, which is one bit error from a code word c1. Also let
1 ≤ m ≤ 63 be the magic field bit and em the unit vector with bit m
set. The one bit error is different from the magic field, so x − c1 ̸= em.
Let y = x − em, which is also one bit away from a code word c2, with
error bit k. So y = c2 + ek.

Now consider x − ek:

H(x− ek) = H(y+ em − ek) = H(y− ek)+ Hem = Hc2 + Hem = Hem

So x − ek has one bit error at the magic field, which is what we
want. Flipping bit k on the initial chessboard x achieves that.

In all three cases the modified chessboard is one bit away from a
code word with the error at the magic field and the chessboard was
modified by flipping at most one bit. The players agree that if the
chessboard is a code word instead, then the devil chose bit 64 as the
magic field, which handles the special case. Modifying the chessboard
to get a code word can also be done by flipping at most one bit. This
scales to any chessboard with size a power of two.

8 uwe hoffmann

What follows is a Mathematica session illustrating the strategy. We use a parity check matrix with column k
the bit representation of integer k. This simplifies decoding as remarked in the side note 11 above.

The function hamming generates the parity check matrix for a Hamming code with a given r.

In[1]:= hamming[r_Integer] := Transpose[Table[IntegerDigits[i, 2, r], {i, 1, 2^r - 1}]]

For example

In[2]:= hamming[4] // MatrixForm

Out[2]=
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

We define r and the corresponding Hamming code h for our chessboard

In[3]:= r = 6;

In[4]:= h = hamming[6];

The function pos returns the unit vector with the error bit set from decoding the specified word.

In[5]:= pos[w_] := With[{s = Mod[h.w, 2]}, UnitVector[2^Length[s] - 1, FromDigits[s, 2]]]

Function friendOne implements the strategy part for the first friend. Given the initial state of the chess-
board cb and a magic field mf, it returns a modified chessboard.

In[6]:= friendOne[cb_List, mf_Integer] := Module[{em, y, ey},

em = UnitVector[2^r - 1, mf]; y = Mod[cb - em, 2]; ey = pos[y];

z = Mod[cb - ey, 2]

]

Function friendTwo implements the strategy part for the second friend: decoding the specified chessboard
and returning the index of the error bit which is also the magic field.

In[7]:= friendTwo[cb_List] := Position[pos[cb], 1][[1,1]]

This next function is returning random initial states for the chessboard.

In[8]:= rw := RandomInteger[1, {2^r - 1}]

We can now simulate one game with the devil.
cb is the initial (random) state of the chessboard.

In[9]:= cb = rw;

The magic field is some integer, the devil chose 23.

In[10]:= mf = 23;

The first friend enters the room, modifies the chessboard according to friendOne. The returned value is
the modified chessboard.

In[11]:= cb2 = friendOne[cb, mf];

math notes - devil’s chessboard 9

Let’s check that the Hamming distance between initial and modified chessboard is at most one.

In[12]:= HammingDistance[cb, cb2]

Out[12]= 1

The second friend comes in and decodes with friendTwo, getting 23.

In[13]:= friendTwo[cb2]

Out[13]= 23

Bibliography

Michael Tong. Devil’s chessboard. 2013. URL https://brilliant.

org/discussions/thread/the-devils-chessboard/.

https://brilliant.org/discussions/thread/the-devils-chessboard/
https://brilliant.org/discussions/thread/the-devils-chessboard/

	Bibliography

