Grasshopper jumping

Induction and integer inequalities are the topics of this note ${ }^{1}$.

Problem

Let $a_{1}, a_{2}, \ldots, a_{n}$ be distinct positive integers and let M be a set of $n-1$ positive integers not containing $s=a_{1}+a_{2}+\ldots+a_{n}$. A grasshopper is to jump along the real axis, starting at the point 0 and making n jumps to the right with lengths $a_{1}, a_{2}, \ldots, a_{n}$ in some order. Prove that the order can be chosen in such a way that the grasshopper never lands on any point in M.

We use induction on n and we use the problem as our induction hypothesis with one modification: set M has at most $n-1$ elements.

The base case $n=2$ is trivial.
Let $A=\left\{a_{i}: 1 \leq i \leq n\right\}$ and $M=\left\{m_{i}: 1 \leq i<n\right\}$. Assume $a_{1}<a_{2}<\ldots<a_{n}$ and $m_{1}<m_{2}<\ldots<m_{n-1}$. For the induction step we have several cases.
Case: $a_{n} \in M$
There is an $l: 1 \leq l<n: m_{l}=a_{n}$.
If $l=n-1$: there is an index k for which $a_{k} \notin M$. Then the order $\{k, n, \ldots\}$ never lands on any point in M because $a_{k}+a_{n}>m_{n-1}$.

If $l<n-1$: Define $M^{\prime}=\left\{m_{1}, m_{2}, \ldots, m_{l-1}\right\} \cup\left\{m_{l+1}-a_{n}, \ldots, m_{n-1}-\right.$ $\left.a_{n}\right\}$. Use integers a_{1}, \ldots, a_{n-1} and M^{\prime} as induction step to get an order $a_{\pi(1)}, \ldots, a_{\pi(n-1)}$ with $\pi \in S_{n-1}$.
$a_{\pi(1)} \notin M^{\prime}$ and $a_{\pi(1)}<a_{n}$, so $a_{\pi(1)} \notin M$.
$a_{\pi(1)} \notin\left\{m_{l+1}-a_{n}, \ldots, m_{n-1}-a_{n}\right\}$, so $a_{\pi(1)}+a_{n} \notin\left\{m_{l+1}, \ldots, m_{n-1}\right\}$.
Also $a_{\pi(1)}+a_{n}>a_{n}$ so $a_{\pi(1)}+a_{n} \notin\left\{m_{1}, m_{2}, \ldots, m_{l-1}\right\}$. That means $a_{\pi(1)}+a_{n} \notin M$.

We continue with similar reasoning with the rest: $a_{\pi(1)}+a_{n}+a_{\pi(2)} \notin$ M because $a_{\pi(1)}+a_{\pi(2)} \notin\left\{m_{l+1}-a_{n}, \ldots, m_{n-1}-a_{n}\right\}$, so $a_{\pi(1)}+a_{n}+$ $a_{\pi(2)} \notin\left\{m_{l+1}, \ldots, m_{n-1}\right\}$ and $a_{\pi(1)}+a_{n}+a_{\pi(2)}>a_{n}$ etc.

This means $\{\pi(1), n, \pi(2), \ldots, \pi(n-1)\}$ is a valid order.
${ }^{1}$ For an extension to signed jumps see Géza Kós. On the grasshopper problem with signed jumps. The American Mathematical Monthly, 118:877-886, 2010. URL https://arxiv.org/abs/ 1008. 2936

Case: $a_{n} \notin M$
If there is an $m_{i}<a_{n}$ then we can use the induction step with integers $a_{1}, a_{2}, \ldots, a_{n-1}$ and set $M^{\prime}=\left\{m_{i+1}-a_{n}, m_{i+2}-a_{n}, \ldots, m_{n-1}-a_{n}\right\}$ to find an order and prepend a_{n} to that order.

If not, then $\forall 1 \leq i<n: m_{i}>a_{n}$.
$\sum_{j=1}^{n-1} a_{j} \geq m_{1}$ because otherwise we could have used order $\{1,2, \ldots, n\}$.
We have $a_{1}<a_{n}<m_{1}$ and $\sum_{j=1}^{n-1} a_{j} \geq m_{1}$, so there exists an $1 \leq l<$ $n-1$ such that $s^{\prime}=\sum_{j=1}^{l} a_{j}<m_{1}$.

Define $M^{\prime}=\left\{m_{2}-a_{n}, m_{3}-a_{n}, \ldots, m_{n-1}-a_{n}\right\}$ and use M^{\prime} with the integers $a_{1}, a_{2}, \ldots, a_{n-1}$ in an induction step which gives us an order $\pi \in S_{n-1}$.

Since $a_{\pi(1)}<m_{1}$ and $\sum_{j=1}^{n-1} a_{\pi(j)} \geq m_{1}$ there exists an $1<l \leq n-1$ such that $\sum_{j=1}^{l-1} a_{\pi(j)}<m_{1}$ and $\sum_{j=1}^{l} a_{\pi(j)} \geq m_{1}$.

We look at the order $\{\pi(1), \ldots, \pi(l-1), n, \pi(l), \ldots, \pi(n-1)\}$ and claim it is a valid order.

Indeed $\sum_{j=1}^{l-1} a_{\pi(j)}<m_{1}$, so jumps $\{\pi(1), \ldots, \pi(l-1)\}$ won't encounter anything from M. We also have

$$
\sum_{j=1}^{l-1} a_{\pi(j)}+a_{n}>\sum_{j=1}^{l} a_{\pi(j)} \geq m_{1}
$$

which means $\left\{\pi(1), \ldots, \pi(l-1), a_{n}\right\}$ will avoid m_{1}. It will also avoid anything from $M \backslash\left\{m_{1}\right\}$ because $\{\pi(1), \ldots, \pi(l-1)\}$ avoids anything from M^{\prime}. The rest of the order is already bigger than m_{1} and avoids $M \backslash\left\{m_{1}\right\}$ by induction.

Bibliography

Géza Kós. On the grasshopper problem with signed jumps. The American Mathematical Monthly, 118:877-886, 2010. URL https: //arxiv.org/abs/1008. 2936.

