
Fibolucci

Exercise ‘Fibolucci’ in Programming, The Derivation of Algorithms1. 1 A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

Problem

Write a program that calculates the function

f (n) =
n

∑
i=0

fib(i)fib(n − i), for n ≥ 0

where fib is the Fibonacci sequence defined by:

fib(0) = 0

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n), for n ≥ 0

To solve the Fibolucci sum we adopt the same notation used in Pro-
gramming in the 1990s2: The notation of function application is the 2 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

"dot" notation with name of function, followed by arguments, each
separated by a dot. The notation of quantified expressions has the op-
erator followed by the bounded variables, then a colon followed by the
range for the bounded variables and ended with a colon and the actual
expression. So

(∑ k : i ≤ k < j : xk)

corresponds to the more classical mathematical notation ∑
j−1
k=i xk.

For our derivation steps in predicate calculus we will use the fol-
lowing notation:

A
= < reason why A equals B >

B
≤ < reason why B is less than C >

C

2 uwe hoffmann

We start by finding a recursive expression for f . We will use proper-
ties of quantified expressions as covered in Chapter 3 of Programming
in the 1990s3. Since fib.(0) = 0 we can use an equivalent definition 3 Edward Cohen. Programming in the

1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990

expression for f :

f (n) = (∑ i : 1 ≤ i < n : fib.i fib.(n − i))

We derive:

f .(n + 2)
= < definition of f >

(∑ i : 1 ≤ i < n + 2 : fib.i fib.(n + 2 − i))
= < range split, 1-point rule >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 2 − i)) + fib.(n + 1) fib.(1)
= < fib.(1) = 1 >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 2 − i)) + fib.(n + 1)
= < definition of fib >

(∑ i : 1 ≤ i < n + 1 : fib.i (fib.(n + 1 − i) + fib.(n − i))) + fib.(n + 1)
= < splitting the term >

(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n + 1 − i)) +
(∑ i : 1 ≤ i < n + 1 : fib.i fib.(n − i)) + fib.(n + 1)

= < definition of f >

f .(n + 1) + (∑ i : 1 ≤ i < n + 1 : fib.i fib.(n − i)) + fib.(n + 1)
= < range split, 1-point rule, fib.(0) = 0 >

f .(n + 1) + (∑ i : 1 ≤ i < n : fib.i fib.(n − i)) + fib.(n + 1)
= < definition of f >

f .(n + 1) + f .n + fib.(n + 1)

We get the recursive definition of f :

f .0 = 0

f .1 = 0

f .(n + 2) = fib.(n + 1) + f .(n + 1) + f .n, for n ≥ 0

It is straightforward to write a program that computes f from this
recursive definition, either iteratively with a loop that step by step
computes next values of f starting with f (2) and remembering the
last two computed values of f and of fib for the next computations, or
in Haskell by simply declaring the above recursions for f and fib. This
will lead to a runtime of O(n). But can we do better than linear ?

Let’s look again at the recursive expressions of the two functions
involved, leaving out the base cases and computing one additional
next value:

math notes - fibolucci 3

f .(n + 2) = fib.(n + 1) + f .(n + 1) + f .n

f .(n + 3) = fib.(n + 2) + f .(n + 2) + f .(n + 1)

fib.(n + 2) = fib.(n + 1) + fib.n

fib.(n + 3) = fib.(n + 2) + fib.(n + 1)

The key observation we can make here is that new values of the
two functions are linear combinations of previously computed values.
Linear combinations implies linear applications with matrix represen-
tations from linear algebra. How many previously computed values,
i.e. how far back do we need to go: we need the last computed value
last and the value computed before that, so 2 previous values. Looks
like we could try something in a linear space of dimension 2.

Let’s try first with fib which is simpler and doesn’t depend on f . We
define the function Fib : N → N2 into the two-dimensional space N2:

Fib.n =

(
fib.n

fib.(n + 1)

)
, for n ≥ 0

For a recursive expression for Fib we have:

Fib.(n + 1)
= < definition of Fib >(

fib.(n + 1)
fib.(n + 2)

)
= < definition of fib >(

fib.(n + 1)
fib.(n + 1) + fib.n

)
= < matrix multiplication >(

0 1
1 1

)(
fib.n

fib.(n + 1)

)
= < definition of Fib >(

0 1
1 1

)
Fib.n

So

Fib.(n + 1) =

(
0 1
1 1

)
Fib.n = . . . =

(
0 1
1 1

)n+1

Fib.0

The same approach can be used for f . We define a function F : N →
N4 into the four-dimensional space N4:

F.n =


fib.n

fib.(n + 1)
f .n

f .(n + 1)

 , for n ≥ 0

4 uwe hoffmann

For a recursive expression for F we have:

F.(n + 1)
= < definition of F >

fib.(n + 1)
fib.(n + 2)
f .(n + 1)
f .(n + 2)


= < definitions of fib and f >

fib.(n + 1)
fib.(n + 1) + fib.n

f .(n + 1)
f .(n + 1) + f .n + fib.(n + 1)


= < matrix multiplication >

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1




fib.n
fib.(n + 1)

f .n
f .(n + 1)


= < definition of F >

0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

 F.n

and

F.(n + 1) =


0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1

 F.n = . . . =


0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1


n+1

F.0

Calculating F.n also calculates f .n so if we can calculate F.n faster
than linear we also solve the original problem faster than linear. F.n is
basically an exponentiation so let’s look at the exponentiation function
exp(x, n) = xn. The following recursive expression holds for exp:

exp.x.n =

exp.(x x).(n/2) if n = 0 mod 2

x exp.x.(n − 1) if n = 1 mod 2

At least at every other step in the above recursion n is halved so
computing exp(x, n) has O(log n) runtime which also implies O(log n)
runtime for F.

Before we write the actual code for computing F let’s first see if we
can find a more compact representation for the powers of matrix A
involved in the computation:

math notes - fibolucci 5

A =


0 1 0 0
1 1 0 0
0 0 0 1
0 1 1 1


We are searching for patterns in the powers of A:

A2 =


1 1 0 0
1 2 0 0
0 1 1 1
1 2 1 2

 , A3 =


1 2 0 0
2 3 0 0
1 2 1 2
2 5 2 3

 , A4 =


2 3 0 0
3 5 0 0
2 5 2 3
5 10 3 5


We make the conjecture that Ak for any natural k is of the form:

Ak =


a b 0 0
b a + b 0 0
c d a b
e f b a + b

 , for some a, b, c, d, e, f ∈ N (1.1)

and prove this by induction. The base case for k = 1 is established
with values (0, 1, 0, 0, 0, 1) for (a, b, c, d, e, f). Assuming that the conjec-
ture holds for Ak we look at Ak+1 and get:

Ak+1 = Ak A =


b a + b 0 0

a + b a + 2b 0 0
d b + c + d b a + b
f a + b + e + f a + b a + 2b


so Ak+1 has the same form as stated in the conjecture if we substi-

tute (b, a+ b, d, b+ c+ d, f , a+ b+ e+ f) for (a, b, c, d, e, f). This proves
conjecture (1.1).

It means that in our program we can use a tuple representation
(a, b, c, d, e, f) of 6 values instead of the whole 16 values to represent
the powers of A. We need to define multiplication in this tuple space
consistent with the matrix multiplication:

(a, b, c, d, e, f)(a′, b′, c′, d′, e′, f ′) =

(aa′ + bb′,

ab′ + b(a′ + b′),

ca′ + db′ + ac′ + be′,

cb′ + d(a′ + b′) + ad′ + b f ′,

ea′ + f b′ + bc′ + (a + b)e′,

eb′ + f (a′ + b′) + bd′ + (a + b) f ′)

6 uwe hoffmann

We read this definition off the matrix multiplication:
a b 0 0
b a + b 0 0
c d a b
e f b a + b




a′ b′ 0 0
b′ a′ + b′ 0 0
c′ d′ a′ b′

e′ f ′ b′ a′ + b′


The last expression we need is:

AnF.0 =


a b 0 0
b a + b 0 0
c d a b
e f b a + b




0
1
0
0

 =


b

a + b
d
f


so we are interested in d which corresponds to the F.n coordinate of

the vector.
Putting all the pieces together we get the final Haskell program:

math notes - fibolucci 7

Listing 1.1: Haskell code

type Tuple6 Ints = (Int , Int , Int , Int , Int , Int)

tmul : : Tuple6 Ints −> Tuple6 Ints −> Tuple6 Ints

tmul (a , b , c , d , e , f) (a ’ , b ’ , c ’ , d ’ , e ’ , f ’) =
(a * a ’ + b * b ’ ,

a * b ’ + b * (a ’ + b ’) ,
c * a ’ + d * b ’ + a * c ’ + b * e ’ ,
c * b ’ + d * (a ’ + b ’) + a * d ’ + b * f ’ ,
e * a ’ + f * b ’ + b * c ’ + (a + b) * e ’ ,
e * b ’ + f * (a ’ + b ’) + b * d ’ + (a + b) * f ’)

f ibexp : : Tuple6 Ints −> Int −> Tuple6 Ints

f ibexp tuple n | n == 0 = e r r o r " undefined "
| n == 1 = tuple
| n ‘mod‘ 2 == 0 =

f ibexp (tuple ‘ tmul ‘ tuple)
(n ‘ div ‘ 2)

| n ‘mod‘ 2 == 1 =
tuple ‘ tmul ‘ (f ibexp tuple (n − 1))

| otherwise = e r r o r " wrong input "

fourth : : Tuple6 Ints −> Int

fourth (a , b , c , d , e , f) = d

f i b o l u c c i : : Int −> Int

f i b o l u c c i n | n == 0 = 0

| otherwise =
fourth (f ibexp (0 , 1 , 0 , 0 , 0 , 1) n)

Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calcu-
lation of Programs. Springer-Verlag, 1990.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.

	Bibliography

