Fibolucci

Exercise ‘Fisorucct’ in Programming, The Derivation of Algorithms?.

Write a program that calculates the function

f(n) = i)ﬁb(i)ﬁb(n —i),forn >0

where fib is the Fibonacci sequence defined by:

fib(0) =0
fib(1) =1
fib(n +2) = fib(n + 1) + fib(n), forn > 0

To solve the Fibolucci sum we adopt the same notation used in Pro-
gramming in the 1990s*: The notation of function application is the
"dot" notation with name of function, followed by arguments, each
separated by a dot. The notation of quantified expressions has the op-
erator followed by the bounded variables, then a colon followed by the
range for the bounded variables and ended with a colon and the actual
expression. So

(Y k:i<k<j:x)
corresponds to the more classical mathematical notation Z;{: X

For our derivation steps in predicate calculus we will use the fol-
lowing notation:

A
= < reason why A equals B >
B

< < reason why B is less than C >
C

* A. Kaldewaij. Programming, The Deriva-
tion of Algorithms. Prentice Hall, 1990

*Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of
Programs. Springer-Verlag, 1990



2 UWE HOFFMANN

We start by finding a recursive expression for f. We will use proper-
ties of quantified expressions as covered in Chapter 3 of Programming

in the 1990s3. Since fib.(0) = 0 we can use an equivalent definition 3Edward Cohen. Programming in the
1990s, An Introduction to the Calculation of

expression for f: 0
Programs. Springer-Verlag, 1990

f(n)=()_i:1<i<n:fibifib.(n—1i))
We derive:

f.(n+2)
= < definition of f >
(i1 <i<n+2:fibifib.(n+2—1))
= < range split, 1-point rule >
(Li:1<i<n+1:fibifib.(n+2—1i))+fib.(n+1) fib.(1)
= < fib(l)=1 >
(Yi:1<i<n41:fibifib..n+2—1i))+fib.(n+1)
= < definition of fib >
(Yi:1<i<n+41:fibi(fib..(n+1—1i)+fib.(n—1)))+fib.(n+1)
= < splitting the term >
(Yi:1<i<n+41:fibifib..n+1-1i))+
(i1 <i<n+1:fibifib.(n—i))+fib.(n+1)
= < definition of f >
fn+1)+(Ci:1<i<n+1:fibifib.(n—i))+fib.(n+1)
= < range split, 1-point rule, fib.(0) =0 >
fn+1)+(Xi:1<i<n:fibifib..n—1i))+fib.(n+1)
= < definition of f >
fn+1)+ fn+fib.(n+1)

We get the recursive definition of f:

f0=0
f1=0
f.n+2)=fib.,n+1)+ f.(n+1)+ f.n, forn >0

It is straightforward to write a program that computes f from this
recursive definition, either iteratively with a loop that step by step
computes next values of f starting with f(2) and remembering the
last two computed values of f and of fib for the next computations, or
in Haskell by simply declaring the above recursions for f and fib. This
will lead to a runtime of O(#n). But can we do better than linear ?

Let’s look again at the recursive expressions of the two functions
involved, leaving out the base cases and computing one additional
next value:



fn+2)=fib(n+1)+ f.(n+1)+ fn
fn+3)=fib.(n+2)+f.(n+2)+ f.(n+1)
fib.(n+2) = fib.(n +1) + fib.n

fib.(n+3) = fib.(n +2) +fib.(n + 1)

The key observation we can make here is that new values of the
two functions are linear combinations of previously computed values.
Linear combinations implies linear applications with matrix represen-
tations from linear algebra. How many previously computed values,
i.e. how far back do we need to go: we need the last computed value
last and the value computed before that, so 2 previous values. Looks
like we could try something in a linear space of dimension 2.

Let’s try first with fib which is simpler and doesn’t depend on f. We
define the function Fib : N — IN? into the two-dimensional space IN%:

— fib.n
Fibn = (ﬁb.(n+ 1>> ,forn>0

For a recursive expression for Fib we have:

Fib.(n+1)
= < definition of Fib >

fib.(n+1)
fib.(n +2)

= < definition of fib >

fib.(n+1)
fib.(n+1) +fib.n

= < matrix multiplication >

0 1 fibn
1 1) \fib.(n+1)

= < definition of Fib >

(0 1) Fib.n
1 1

01 o 1\""
Fib.(n+1)=<1 1) Fib.n:...:<1 1) Fib.0

The same approach can be used for f. We define a function F : N —

So

IN* into the four-dimensional space IN*:

fib.n
Fn= fib.(n+1) ,forn >0

fn
f.(n+1)

MATH NOTES - FIBOLUCCI

3



4 UWE HOFFMANN

For a recursive expression for F we have:

F.(n+1)
= < definition of F >
fib.(n+1)
fib.(n +2)
f(n+1)
f(n+2)
= < definitions of fib and f >
fib(n+1)
fib.(n+ 1) + fib.n

fn+1)
f.n+1)+ fn+fib.(n+1)
= < matrix multiplication >

0100 fib.n
110 0f[fibtn+1)
0001 fn
011 1) \f(n+1)
= < definition of F >
01 00
1100[_,.”
0 0 0 1
01 1 1
and
010 0 01 0 o\
F.(n+1) = 1100 Fn= = 1100 F.0
0 0 0 1 0 0 0 1
01 1 1 01 1 1

Calculating F.n also calculates f.n so if we can calculate F.n faster
than linear we also solve the original problem faster than linear. F.n is
basically an exponentiation so let’s look at the exponentiation function
exp(x,n) = x™. The following recursive expression holds for exp:

exp.(x x).(n/2) if n =0 mod 2
exp.x.n =
xexpx.(n—1) ifn=1mod?2

At least at every other step in the above recursion n is halved so
computing exp(x, n) has O(log n) runtime which also implies O(log n)
runtime for F.

Before we write the actual code for computing F let’s first see if we
can find a more compact representation for the powers of matrix A
involved in the computation:



0100
A:1100
0 0 01
0111

We are searching for patterns in the powers of A:

1100 1 200 2 3 00
A2 1 200 A3 — 23 00 A4 — 3 5 00
011 1)’ 121 2|7 2 5 23
1 21 2 2 5 2 3 5 10 3 5

We make the conjecture that A* for any natural k is of the form:

a b 0 0

Ak = b atb 0 0 , for some a,b,c,d,e, f € N (1.1)
c d a b
e f b a+b

and prove this by induction. The base case for k = 1 is established
with values (0,1,0,0,0,1) for (a,b,c,d, e, f). Assuming that the conjec-
ture holds for A¥ we look at A¥*! and get:

b a+b 0 0
a+b a+2b 0 0

d b+c+d b a+b

f at+bt+e+f a+b a+2b

Ak-’rl :AkAI

so A1 has the same form as stated in the conjecture if we substi-
tute (b,a+b,d,b+c+d, f,a+b+e+f)for (a,b,c,d,e, f). This proves
conjecture (1.1).

It means that in our program we can use a tuple representation
(a,b,c,d,e, f) of 6 values instead of the whole 16 values to represent
the powers of A. We need to define multiplication in this tuple space
consistent with the matrix multiplication:

(a,b,c,d,e, f)(d,b,c,d,e, f)=
(ad’ + bV,
ab' +b(a +1),
ca' +db' +ac’ +be,
cb' +d(a' + V') +ad +bf,
ea' + fb' +bc’ + (a+b)e,
et/ + f(a' +b')+bd + (a+0b)f)

MATH NOTES - FIBOLUCCI

5



6 UWE HOFFMANN

We read this definition off the matrix multiplication:

a b 0 0 a’ v 0 0
b a+b 0 0 boad+b 0 0
c d a b c d a’ v
e f b oa+b) \e f b d+V

The last expression we need is:

a b 0 0 0 b

b a+b 0 0 1 a+b
AnFOZ —

c d a b 0 d

e f b a+b 0 f

so we are interested in d which corresponds to the F.n coordinate of

the vector.
Putting all the pieces together we get the final Haskell program:



Listing 1.1: Haskell code

type Tuple6Ints = (Int, Int, Int, Int, Int, Int)

tmul :: Tuple6lnts —> Tuple6lnts —> Tuple6lnts
tmul (a, b, ¢, d, e, f) (a’, b’, ¢’, d’", e’, f’) =
(a = a” +b b’,
a*b” +bs=+ (a” +b"),
c*+a +d=*b” +a=*c” +b=+e’,
c*+b” +d=* (a” +b’) +a=d +b =,
exa + f+xb” +b=x*c” + (a+Db)=xe’,
e » b” + f+ (a” + b’) +b »d” + (a+Db) = f’)

fibexp :: Tuple6Ints —> Int -> Tuple6lnts

fibexp tuple n | n == o = error "undefined"
I n == 1 = tuple
' n ‘mod” 2 == 0 =

fibexp (tuple “tmul’ tuple)
(n ‘div’ 2)

I n ‘mod’ 2 == 1 =
tuple ‘tmul”’ (fibexp tuple (n - 1))
| otherwise = error "wrong_input"
fourth :: Tuple6Ints —> Int

fourth (a, b, ¢, d, e, f) =d

fibolucci :: Int —> Int
fibolucci n | n == 0 = o
| otherwise =

fourth (fibexp (o, 1, o, o, o, 1) n)

MATH NOTES - FIBOLUCCI

7



Bibliography

Edward Cohen. Programming in the 1990s, An Introduction to the Calcu-
lation of Programs. Springer-Verlag, 1990.

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.



	Bibliography

