
Enigma

Enigma Machines and how the internal wiring of their rotors was
reverse-engineered is the topic of this section. We will follow a simpli-
fied version of Rejewski’s description 1 of his work. 1 Marian Rejewski. How Polish mathe-

maticians broke the Enigma cipher. IEEE
Annals of the History of Computing, 3(3):
213–234, 1981. ISSN 1058-6180

An Enigma Machine applies a series of permutations to each typed
letter, mapping it to another letter (which lights up on the Lampboard,
see Figure 1.1), thus encrypting a message2. 2 Enigma machines were used by

the Nazis in WWII to encrypt/de-
crypt messages. The machines are
rotor-based electromechanical type-
writers. http://en.wikipedia.org/

wiki/Enigma_machine has a detailed
description of their internals.
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Figure 1.1: Enigma Permutations

Electrical current flows from the typed letter through the plugboard,
then the right rotor, the middle rotor and the left rotor. It then en-
ters the reflector and goes back in reverse order through the same
components ending up on the lampboard where the corresponding
encrypted letter lights up. The plugboard, rotors and reflector have
internal wirings which correspond to permutations in S26

3. The re-

3 S26 is the symmetric group of permuta-
tions of {1, 2, . . . , 26}.

sulting permutation applied to a letter by the Enigma Machine is the
product4:

4 We use the convention of permutation
product as function composition, so for
A, B ∈ S26 we have AB = A ◦ B and
AB(x) = A(B(x)).

P−1N−1
k M−1

k L−1
k RLk Mk NkP

The rotors rotate after each typed letter in the style of an odometer:
the right rotor rotates one position after each typed letter, the middle
rotor rotates one position after each full-circle rotation of the right rotor
and the left rotor rotates one position after each full-circle rotation of
the middle rotor. Rotating the rotors changes the permutations they
will apply to a letter, so their permutations are indexed by k in the
product above and in the Figure 1.1. We will see later how we can
model these rotations with permutations.

The reflector pairs each letter with another (always different) letter,
thus it is a product of 13 disjoint transpositions. A permutation made
out of only disjoint transpositions is called a proper involution. We
will see why the Enigma Machine designers chose a proper involution
for the reflector.

First though we need to collect some facts about permutations that
we will use in our Enigma Machine analysis.

http://en.wikipedia.org/wiki/Enigma_machine
http://en.wikipedia.org/wiki/Enigma_machine
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Theorem 1.1. Every permutation can be written as a product of disjoint
cycles. This product is unique (ignoring cycle order and order of elements in
cycle).

Proof. Let π ∈ Sn be a permutation.
We start by choosing an arbitrary x1 ∈ {1, . . . , n} and define for it

the set

Tx1 = {x1, π(x1), π2(x1), . . .}

{1, . . . , n} is finite, Tx1 ⊆ {1, . . . , n}, so Tx1 is finite too. This means
that sooner or later there exist i < j with π j(x1) = πi(x1) or x1 =

π j−i(x1). Then ord(x1) = j − i is the order of x1. It follows that

Tx1 = {x1, π(x1), π2(x1), . . . , πord(x1)−1(x1)}

and Tx1 implies the cycle (x1, π(x1), π2(x1), . . . , πord(x1)−1(x1)). Tx1

is called the π-orbit of x1. Let’s denote this cycle

⟨x1⟩ = (x1, π(x1), π2(x1), . . . , πord(x1)−1(x1))

We now choose an arbitrary x2 ∈ {1, . . . , n} \ Tx1 . If there is no such
x2 we stop this process and jump to the section in the proof after all xk

have been chosen. We similarly define Tx2 and cycle ⟨x2⟩.
Tx2 and Tx1 are disjoint5. 5 Assume y ∈ Tx2 ∩ Tx1 . Then y = πi(x1)

and y = π j(x2). It follows that x2 ∈ Tx1
or x1 ∈ Tx2 , either one of which contra-
dicts how x2 was chosen. Another way
to see this is by defining the following re-
lationship: ∀a, b ∈ Sn : a ∼ b ≡ ∃n ∈ N :
b = πn(a). It’s not hard to see that a ∼ b
so defined is an equivalence relationship
and with it the Txi become equivalence
classes and partition Sn.

We continue and choose an arbitrary x3 ∈ {1, . . . , n} \ (Tx1 ∪ Tx2),
and in general an arbitrary

xk ∈ {1, . . . , n} \ (
k−1⋃
i=1

Txi )

Since all the Txi are non-empty and {1, . . . , n} is finite, we eventually
have to stop. We then have chosen x1, x2, . . . , xk and the corresponding
sets Tx1 , Tx2 , . . . , Txk and cycles ⟨x1⟩, ⟨x2⟩, . . . , ⟨xk⟩.

The sets Txi and their corresponding cycles are by construction pair-
wise disjoint. We also have {1, . . . , n} =

⋃k
i=1 Txi .

We define the permutation ρ as the product of the cycles chosen
above:

ρ =
k

∏
i=1

⟨xi⟩

and show that ρ = π.
For all y ∈ {1, . . . , n} there exists a unique 1 ≤ i ≤ k such that

y ∈ Txi .
6 6 Because {1, . . . , n} =

⋃k
i=1 Txi and

Tx1 , Tx2 , . . . , Txk are pairwise disjoint and
form a partition of {1, . . . , n}.

So y = π j(xi) for some index 0 ≤ j < ord(xi). Since the cycles are
disjoint, only cycle ⟨xi⟩ from ρ affects y. We have
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ρ(y) = ⟨xi⟩(y)
= ⟨xi⟩(π j(xi))

= π j+1(xi)

= π(π j(xi))

= π(y)

Given two permutations π, ρ ∈ Sn, the product ρπρ−1 is called a
conjugate of π.

Theorem 1.2. Conjugation preserves cycle structure, i.e. conjugates have
cycles of the same length with the same multiplicity.

Incidentally Theorem 1.2 is the reason
why the products πρ and ρπ have the
same cycle structure. Even though in
general πρ ̸= ρπ, πρ and ρπ are conju-
gate. This was the question asked in Ex-
ercise 5.5 on page 34 from Michael Artin.
Algebra. Addison Wesley, 2 edition, 2010.
ISBN 0132413779.

Proof. Consider π, ρ ∈ Sn. From Theorem 1.1 we know that π is a
product of disjoint cycles π = ∏k

i=1 ρi. For the conjugate ρπρ−1 we
can write:

ρπρ−1 = ρρ1ρ2ρ3 . . . ρkρ−1

= ρρ1(ρ
−1ρ)ρ2(ρ

−1 . . . ρ)ρkρ−1

= (ρρ1ρ−1)(ρρ2ρ−1) . . . (ρρkρ−1)

=
k

∏
i=1

ρρiρ
−1

so it is enough to prove the theorem for a cycle.
Let ρ = (a1, a2, . . . , ar) be a cycle of length r. We have

(ρρρ−1)(ρ(ai)) = (ρρ)(ai) = ρ(ai+1)

so ρρρ−1 will have the cycle (ρ(a1), ρ(a2), . . . , ρ(ar)) with length r.
Now assume that x is moved by ρρρ−1, so (ρρρ−1)(x) ̸= x. It follows
that (ρρ−1)(x) ̸= ρ−1(x) or ρ(ρ−1(x)) ̸= ρ−1(x). This means that
ρ−1(x) ∈ (a1, a2, . . . , ar) and x ∈ (ρ(a1), ρ(a2), . . . , ρ(ar)). It follows
that ρρρ−1 = (ρ(a1), ρ(a2), . . . , ρ(ar)). 1
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Figure 1.2: Initial Rotor

We have seen that an Enigma Machine permutation E is the product

E = P−1N−1
k M−1

k L−1
k RLk Mk NkP

= (Lk Mk NkP)−1R(Lk Mk NkP)

= QRQ−1

with Q = (Lk Mk NkP)−1. This means that E is a conjugate of the
reflector permutation R, and according to Theorem 1.2 has the same
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cycle structure as R. So E is a proper involution (because R is) and
also E−1 = E. The same Enigma Machine configuration was used to
encrypt and decrypt a message, which was probably why the Enigma
Machine designers chose a proper involution for R and ultimately for
E. 1
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Figure 1.3: Rotor after one rotation

Let’s analyse the rotor motion on the example in Figure 1.2. It shows
a small rotor with an internal wiring doing a permutation from S4. It
has 4 inputs/outputs and permutation (12)(34). Rotating it down one
position as in Figure 1.3 doesn’t change its internal wiring but shifts
the inputs/outputs. Input one is now connected to the yellow wire
instead of the red, input two to the red wire instead of the blue, etc.
The resulting permutation is (14)(23). The inputs have been shifted
according to (4321) and the outputs according to (1234), so (14)(23) =
(1234)(12)(34)(1432). In general one rotation of a rotor is equivalent
to conjugating it with the full cycle permutation σ, in other words we
have Nk+1 = σNkσ−1. To see why this is true, consider input x touches
the red wire in the rotor after the rotation. We don’t know yet where
the rotor will map x. We do know that if x touches the red wire in
the rotor after the rotation, then σ−1(x) is touching the red wire before
the rotation (because all inputs and outputs have been shifted down).
Also we know where the rotor maps any input y before the rotation,
namely to Nk(y). So σ−1(x) is mapped to Nk(σ

−1(x)). And any output
from before the rotation is shifted down once after the rotation, in this
case to σ(Nk(σ

−1(x))) after the rotation. Collecting this tracing into
one expression, we have Nk+1(x) = σ(Nk(σ

−1(x))).
Assuming only the right rotor moves, the first six Enigma permuta-

tions are:

A = P−1N−1
0 M−1

0 L−1
0 RL0M0N0P

B = P−1σN−1
0 σ−1M−1

0 L−1
0 RL0M0σN0σ−1P

C = P−1σ2N−1
0 σ−2M−1

0 L−1
0 RL0M0σ2N0σ−2P

D = P−1σ3N−1
0 σ−3M−1

0 L−1
0 RL0M0σ3N0σ−3P

E = P−1σ4N−1
0 σ−4M−1

0 L−1
0 RL0M0σ4N0σ−4P

F = P−1σ5N−1
0 σ−5M−1

0 L−1
0 RL0M0σ5N0σ−5P

(1.1)

The first six permutations are important because of how the German
Nazis chose to operate Enigma. It was known to the code breakers7

7 Marian Rejewski, Henryk Zygalski and
Jerzy Różycki. http://en.wikipedia.

org/wiki/Marian_Rejewski

that after configuring Enigma to its daily settings and before sending
a message, an operator would send a block of three letters twice. The
three letters encoded a message key and because transmission lines
were deemed unreliable, these three letters would be sent twice. This
means that for each message transmission the input to permutations A
and D was the same letter (similar for B and E and for C and F). The

http://en.wikipedia.org/wiki/Marian_Rejewski
http://en.wikipedia.org/wiki/Marian_Rejewski
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code breakers had access to two months of intercepted messages and
daily key settings. So they could determine that an unknown letter u
was mapped by A to the observed letter x and by D to the observed
letter y, so A(u) = x and D(u) = y. Because A and D are each proper
involutions8 it also holds that A(x) = u and D(y) = u. It follows that 8 This is one example of why choosing

a proper involution as the encryption
permutation was a bad idea for Enigma
Machines. As it turns out it was fatally
bad: It was the main weakness that
allowed the British bombe machine built
at Bletchley Park by Alan Turing and
Gordon Welchman to decrypt Enigma
encrypted messages. http://en.

wikipedia.org/wiki/Cryptanalysis_

of_the_Enigma#British_bombe

AD(y) = A(D(y)) = A(u) = x. So AD maps one observed letter to
another observed letter. With enough messages in a given day, each
letter of the alphabet will be observed which then completely defines
AD and similarly BE and CF. So for a given day AD, BE and CF were
known permutations. The goal now is to factor AD into A and D.

We need a way to compute how many possible factorizations there
are and a way to generate all possibilities. To accomplish this we need
to collect some properties of products of proper involutions. We will
use a simplified approach similar to the approach described in chapter
3.8 of Lawrence and Zorzitto [2021]9. 9

J.W. Lawrence and F.A. Zorzitto.
An Introduction to Abstract Algebra:
A Comprehensive Introduction. Cam-
bridge Mathematical Textbooks. Cam-
bridge University Press, 2021. ISBN
9781108836654. URL https://books.

google.com/books?id=PvQgEAAAQBAJ

Theorem 1.3. Let π = τρ be the product of proper involutions τ and ρ and
let x ∈ {1, . . . , n}. Then the π-orbits of x and ρ(x) are disjoint and have
equal length.

Proof. Reminder here that the π-orbit of x is

Tx = {x, π(x), π2(x), . . . , πord(x)−1(x)}

Assume the two orbits are not disjoint and y ∈ Tx ∩ Tρ(x). For some
integers i and j we have y = πi(x) = π j(ρ(x)). Let m = ord(ρ(x)) and
let (k − 1)m < j ≤ km for some k. Then

πi+km−j(x) = πkm(ρ(x)) = ρ(x)

Let n = i + km − j and so

ρ(πn(x)) = ρ2(x) = x

because ρ is a proper involution (so it is its own inverse).
We now have two cases: n can be even or odd.
When n = 2l:

ρπn = ρπlπl

= ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
l-times

πl

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
l-times

ρπl

= π−lρπl

This means that ρπn is a conjugate of ρ and thus it is a proper invo-
lution and cannot have x mapping to itself. We have a contradiction.

http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
http://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma#British_bombe
https://books.google.com/books?id=PvQgEAAAQBAJ
https://books.google.com/books?id=PvQgEAAAQBAJ


6 uwe hoffmann

When n = 2l + 1:

ρπn = ρπlτρπl

= ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
l-times

τρπl

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
l-times

ρτρπl

= (ρπ)−1τ(ρπl)

This means that ρπn is a conjugate of τ and thus it is a proper
involution and cannot have x mapping to itself. Again we have a
contradiction.

We just showed that the π-orbits of x and ρ(x) are disjoint. To show
that the orbits have the same length, we again reach for this useful
identity: for any integer m we have ρπm = π−mρ. This is because

ρπm = ρ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
m-times

= (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
m-times

ρ

= π−mρ

The identity allows for this equivalence:

π−m(ρ(x)) = ρ(x) ⇔ ρ(x) = ρ(πm(x)) ⇔ πm(x) = x

It means that the π−1-orbit of ρ(x) has the same length as the π-
orbit of x. But π−1-orbit and π-orbit of an element are the same10. So 10 Just walk the cycle backwards.

the π-orbits of x and ρ(x) have the same length.

Theorem 1.4. Let π = τρ be the product of proper involutions τ and ρ and
let x ∈ {1, . . . , n}. Then the π-orbits of τ(x) and ρ(x) are equal. In addition
to that, the π-orbit of x is mapped by τ and ρ onto this common π-orbit of
τ(x) and ρ(x).

Proof. Keeping in mind that a proper inversion is its own inverse, we
have:

ρ(x) = ρ(x)

= ρ(τ2(x))

= (ρτ)(τ(x))

= π−1(τ(x))
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so then π(ρ(x)) = τ(x) and τ(x) is in the π-orbit of ρ(x).
Using the ρπm = π−mρ identity again, we see that

ρ(πm(x)) = π−m(ρ(x))

so ρ maps the π-orbit of x onto the π-orbit of ρ(x).
To see where τ maps the π-orbit of x we need a similar identity, so

lets deduce it:

τπm = τ (τρ)(τρ) . . . (τρ)︸ ︷︷ ︸
m-times

= ττ (ρτ)(ρτ) . . . (ρτ)︸ ︷︷ ︸
m−1-times

ρ

= π−m+1ρ

= π−m+1π−1τ

= π−mτ

We can use this identity for:

τ(πm(x)) = π−m(τ(x))

= π−m(πρ)(x)

= π1−m(ρ(x))

so τ also maps the π-orbit of x onto the π-orbit of ρ(x).

Theorem 1.5. Let π = τρ be the product of proper involutions τ and ρ and
let x ∈ {1, . . . , n}. Let y /∈ Tx ∪ Tρ(x). Then ρ(y) /∈ Tx ∪ Tρ(x).

Proof. Assume ρ(y) ∈ Tx ∪ Tρ(x). Two cases:
First case: ρ(y) ∈ Tx. Then ρ(y) = πm(x) for some m ∈ N. Keeping

in mind again that the a proper involution is its own inverse, we apply
ρ to both sides to get

y = (ρπm)(x) = π−m(ρ(x))

so y ∈ Tρ(x) which is a contradiction.
Second case: ρ(y) ∈ Tρ(x). We proceed similarly:
ρ(y) = πm(ρ(x)) for some m ∈ N so

y = (ρπm)(ρ(x)) = π−m(ρρ)(x) = π−m(x)

so y ∈ Tx which is a contradiction.
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Theorem 1.6. Let π = τρ be the product of proper involutions τ and ρ.
Then the cycle lengths of π that are greater than one come in even numbers.

Proof. Let (ab) be a cycle of τ. We have two cases:
Case 1: (ab) is also a cycle of ρ. Then the product π has cycles (a)

and (b) of length one.
Case 2: (ab) is not a cycle of ρ. Then it must have a cycle (ac1) for

some c1. In τ there must be a cycle (c1c2) for some c2. In ρ again there
must be a cycle (c2c3) for some c3, . . . (remember, ρ and τ are proper
involutions, so each element participates in one and only one 2-cycle).
We stop with a cycle (c2kb) in ρ, which eventually must happen. Then
the product π has cycles (c2kc2k−2 . . . c2a) and (c1c3c2k−1b) of length k.

We are ready to tackle the factorization. To recap, we have a permu-
tation π that we know and we also know it is a product of two proper
involutions. Our goal is to find out how many possible factorizations
into two proper involutions there are and how do we generate all the
factorizations (because we need the factors to determine the first rotor
wiring).

Theorem 1.7. Let π ∈ S2n be a permutation composed of just two disjoint
cycles of length n. Then π has exactly n factorizations into two proper invo-
lutions.

Proof. Pick an a ∈ {1, . . . , 2n}. It is part of one of the two cycles.
We are looking for possible π = τρ factorizations, with both τ and
ρ being proper involutions. The two π-orbits of the two cycles are
A := Ta = {a, π(a), . . . , πn−1(a)} and B := S2n \ A.

We are going to construct all the possible ρ using the previous the-
orems as constraints (once a possible ρ is constructed, it also fully
determines the other factor, τ).

For example, because of theorem 1.3 we have to pick some element
from B for ρ(a): ρ(a) ∈ B. We will argue that once this choice has been
made, the complete factorization has been determined. Let’s see why.
What value should ρ(π(a)) take ? Again, using the identity ρπm =

π−mρ, we get ρ(π(a)) = π−1(ρ(a)). By repeatedly using the identity
as we move π-forward in the cycle with a, we move π-backwards in
the other cycle and at each stop we make another pair for the proper
involution ρ.

Figure 1.4 shows the process for an example with two cycles of
length four. After setting an a and picking where to map ρ(a), every-
thing else is determined (the labels in the figure show the expressions
determining the relationships).

There are n ways to pick an element from B, hence we can construct
n different ρ, so n different factorizations π = τρ. It doesn’t matter
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<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡
<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡

<latexit sha1_base64="DELtbWNarnRNLOxIHNyKKQwD8ms=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYns8mQ2dllplcISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSQzcRvXLFrbozkGXi5aQCOeq98le3H7M04gqZpMZ0PDdBP6MaBZN8UuqmhieUjeiAdyxVNOLGz2anTsiJVfokjLUthWSm/p7IaGTMOApsZ0RxaBa9qfif10kxvPYzoZIUuWLzRWEqCcZk+jfpC80ZyrEllGlhbyVsSDVlaNMp2RC8xZeXSfOs6l1WL+7PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c2Rzovz7nzMWwtOPnMIf+B8/gBS/Y3X</latexit>⇡
<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="k11aXVxtue3ceF+8Q+UD3RSospI=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIxgSSJcxOZrND5rHMzAoh5Be8eFDEqz/kzb9xNtmDJhY0FFXddHdFKWfG+v63V1pZXVvfKG9WtrZ3dveq+wePRmWa0BZRXOlOhA3lTNKWZZbTTqopFhGn7Wh0m/vtJ6oNU/LBjlMaCjyULGYE21zq6UT1qzW/7s+AlklQkBoUaParX72BIpmg0hKOjekGfmrDCdaWEU6nlV5maIrJCA9p11GJBTXhZHbrFJ04ZYBipV1Ji2bq74kJFsaMReQ6BbaJWfRy8T+vm9n4OpwwmWaWSjJfFGccWYXyx9GAaUosHzuCiWbuVkQSrDGxLp6KCyFYfHmZPJ7Vg8v6xf15rXFTxFGGIziGUwjgChpwB01oAYEEnuEV3jzhvXjv3se8teQVM4fwB97nDyLsjlE=</latexit>⇢

<latexit sha1_base64="KWzY2bLzO31lK/gWLvxnXW12sCk=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVaa9UdivuDGSZeDkpQ45ar/TV7ccsjVAaJqjWHc9NjJ9RZTgTOCl2U40JZSM6wI6lkkao/Wx26IScWqVPwljZkobM1N8TGY20HkeB7YyoGepFbyr+53VSE974GZdJalCy+aIwFcTEZPo16XOFzIixJZQpbm8lbEgVZcZmU7QheIsvL5PmecW7qlzWL8rV2zyOAhzDCZyBB9dQhXuoQQMYIDzDK7w5j86L8+58zFtXnHzmCP7A+fwBxp2M7w==</latexit>a
<latexit sha1_base64="2XkjGoRYNAktKFc5ZJGN5AjpU90=">AAAB7nicbVDLSgMxFL3xWeur6tJNsAh1U2bE17LoxmUF+4B2KJk004ZmkiHJCGXoR7hxoYhbv8edf2PazkJbD1w4nHMv994TJoIb63nfaGV1bX1js7BV3N7Z3dsvHRw2jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR3dRvPTFtuJKPdpywICYDySNOiXVSq6uHqkLOeqWyV/VmwMvEz0kZctR7pa9uX9E0ZtJSQYzp+F5ig4xoy6lgk2I3NSwhdEQGrOOoJDEzQTY7d4JPndLHkdKupMUz9fdERmJjxnHoOmNih2bRm4r/eZ3URjdBxmWSWibpfFGUCmwVnv6O+1wzasXYEUI1d7diOiSaUOsSKroQ/MWXl0nzvOpfVS8fLsq12zyOAhzDCVTAh2uowT3UoQEURvAMr/CGEvSC3tHHvHUF5TNH8Afo8welJ48h</latexit>

⇢(a)

<latexit sha1_base64="u4SQ1kBG+rvl9KLcwlUF8OCbIZ4=">AAAB+nicbVDLTsJAFL31ifgqunQzkZjAQtIaX0uiG5eYyCOhSKbDFCZMp83MVEMqn+LGhca49Uvc+TcO0IWCJ7nJyTn35t57/JgzpR3n21paXlldW89t5De3tnd27cJeQ0WJJLROIh7Jlo8V5UzQumaa01YsKQ59Tpv+8HriNx+oVCwSd3oU006I+4IFjGBtpK5d8GJ2nx6745InB1EJl8tdu+hUnCnQInEzUoQMta795fUikoRUaMKxUm3XiXUnxVIzwuk47yWKxpgMcZ+2DRU4pKqTTk8foyOj9FAQSVNCo6n6eyLFoVKj0DedIdYDNe9NxP+8dqKDy07KRJxoKshsUZBwpCM0yQH1mKRE85EhmEhmbkVkgCUm2qSVNyG48y8vksZJxT2vnN2eFqtXWRw5OIBDKIELF1CFG6hBHQg8wjO8wpv1ZL1Y79bHrHXJymb24Q+szx+bkpLw</latexit>

⇡�1(⇢(a))

<latexit sha1_base64="gWsf++UheLGJjdD8H6qcINIkY64=">AAAB+nicbVDLTgIxFO3gC/E16NJNIzGBhWSG+FoS3bjERB4JM5JO6UBDp520HQ0Z+RQ3LjTGrV/izr+xwCwUPMlNTs65N/feE8SMKu0431ZuZXVtfSO/Wdja3tnds4v7LSUSiUkTCyZkJ0CKMMpJU1PNSCeWBEUBI+1gdD312w9EKir4nR7HxI/QgNOQYqSN1LOLXkzv05PapOzJoSijSqVnl5yqMwNcJm5GSiBDo2d/eX2Bk4hwjRlSqus6sfZTJDXFjEwKXqJIjPAIDUjXUI4iovx0dvoEHhulD0MhTXENZ+rviRRFSo2jwHRGSA/VojcV//O6iQ4v/ZTyONGE4/miMGFQCzjNAfapJFizsSEIS2puhXiIJMLapFUwIbiLLy+TVq3qnlfPbk9L9assjjw4BEegDFxwAergBjRAE2DwCJ7BK3iznqwX6936mLfmrGzmAPyB9fkDnSCS8Q==</latexit>

⇡�2(⇢(a))

<latexit sha1_base64="9DM52WhqxPGhJX+kJRNokvRiA4c=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhVSe6BKeB8ruHAsEn1ITagc12mtOnZkO6Aq9FO4cAAhrnwJN/4Gt80BWkZaaTSzq92dIGZUacf5tnJLyyura/n1wsbm1vaOXdxtKpFITBpYMCHbAVKEUU4ammpG2rEkKAoYaQXD64nfeiBSUcHv9CgmfoT6nIYUI22krl30YnqfHp2My54ciDKqVLp2yak6U8BF4makBDLUu/aX1xM4iQjXmCGlOq4Taz9FUlPMyLjgJYrECA9Rn3QM5Sgiyk+np4/hoVF6MBTSFNdwqv6eSFGk1CgKTGeE9EDNexPxP6+T6PDSTymPE004ni0KEwa1gJMcYI9KgjUbGYKwpOZWiAdIIqxNWgUTgjv/8iJpHlfd8+rZ7WmpdpXFkQf74ACUgQsuQA3cgDpoAAwewTN4BW/Wk/VivVsfs9aclc3sgT+wPn8Anq6S8g==</latexit>

⇡�3(⇢(a))

<latexit sha1_base64="Cys4zx3WOKlewb6qvymw7Vzz2HY=">AAAB7XicbVDLSgNBEOyNrxhfqx69DAYhXsKu+DoGvXiMYB6QLGF2MpuMmZ1ZZmaFsOQfvHhQxKv/482/cZLsQRMLGoqqbrq7woQzbTzv2ymsrK6tbxQ3S1vbO7t77v5BU8tUEdogkkvVDrGmnAnaMMxw2k4UxXHIaSsc3U791hNVmknxYMYJDWI8ECxiBBsrNbsJq+DTnlv2qt4MaJn4OSlDjnrP/er2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLNrJ+jEKn0USWVLGDRTf09kONZ6HIe2M8ZmqBe9qfif10lNdB1kTCSpoYLMF0UpR0ai6euozxQlho8twUQxeysiQ6wwMTagkg3BX3x5mTTPqv5l9eL+vFy7yeMowhEcQwV8uIIa3EEdGkDgEZ7hFd4c6bw4787HvLXg5DOH8AfO5w/T4o6n</latexit>

⇡(a)

<latexit sha1_base64="Z54V5uYa4oLLdK81jeNMSHb8d+I=">AAAB73icbVDLTgJBEOzBF+IL9ehlIjHBC9klvo5ELx4xkUcCK5kdZmHC7Ow6M2tCNvyEFw8a49Xf8ebfOMAeFKykk0pVd7q7/FhwbRznG+VWVtfWN/Kbha3tnd294v5BU0eJoqxBIxGptk80E1yyhuFGsHasGAl9wVr+6Gbqt56Y0jyS92YcMy8kA8kDTomxUrsb84dqmZz2iiWn4syAl4mbkRJkqPeKX91+RJOQSUMF0brjOrHxUqIMp4JNCt1Es5jQERmwjqWShEx76ezeCT6xSh8HkbIlDZ6pvydSEmo9Dn3bGRIz1IveVPzP6yQmuPJSLuPEMEnni4JEYBPh6fO4zxWjRowtIVRxeyumQ6IINTaigg3BXXx5mTSrFfeicn53VqpdZ3Hk4QiOoQwuXEINbqEODaAg4Ble4Q09ohf0jj7mrTmUzRzCH6DPH/yHj0s=</latexit>

⇡2(a)

<latexit sha1_base64="rM9XSOrmVq+L++Pig11gB8i3Q8c=">AAAB73icbVDLTgJBEOzBF+IL9ehlIjHBC9n1fSR68YiJPBJYyewwCxNmZ9eZWROy4Se8eNAYr/6ON//GAfagYCWdVKq6093lx4Jr4zjfKLe0vLK6ll8vbGxube8Ud/caOkoUZXUaiUi1fKKZ4JLVDTeCtWLFSOgL1vSHNxO/+cSU5pG8N6OYeSHpSx5wSoyVWp2YP5yWyXG3WHIqzhR4kbgZKUGGWrf41elFNAmZNFQQrduuExsvJcpwKti40Ek0iwkdkj5rWypJyLSXTu8d4yOr9HAQKVvS4Kn6eyIlodaj0LedITEDPe9NxP+8dmKCKy/lMk4Mk3S2KEgENhGePI97XDFqxMgSQhW3t2I6IIpQYyMq2BDc+ZcXSeOk4l5Uzu/OStXrLI48HMAhlMGFS6jCLdSgDhQEPMMrvKFH9ILe0cesNYeymX34A/T5A/4Oj0w=</latexit>

⇡3(a)
Figure 1.4: Constructing ρ.

which a we start with. Through the cycle-wise rotation in cycle with a
and counter-cycle rotation in the cycle with ρ(a), we see all n possible
ρ constructions, regardless which a is our anchor. Does it matter from
which cycle we choose the anchor ? It doesn’t because again the same
factorizations would be produced if all the ρ-arrows in figure 1.4 were
reversed.

Now theorem 1.6 assures us that any product of two proper involu-
tions has cycle lengths greater than one occurring an even number of
times. We can always pair up two cycles of the same length. Theorems
1.4 and 1.5 help us isolate the pairings and construct the factors by
restricting ourselves to each pairing and using the construction from
theorem 1.7 to build the possible factors for each paired restriction. We
multiply all the restricted τ’s to get the unrestricted τ and multiply all
the restricted ρ’s to get the unrestricted ρ.

So how many factorizations are there for a given product π? Lets
say π has 2mk cycles of length k. In how many ways can we pair up
these 2mk cycles?

Theorem 1.8. The number of ways W to form m pairs from the integers
{1, 2, . . . , 2m} is

W =
(2m)!
2mm!

Proof. Integer one can be paired with 2m − 1 other integers. Picking
an unpaired remaining integer, it can be paired with 2m − 3 other
integers, etc.

It follows that
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W = (2n − 1)(2n − 3) . . . 5 · 3 · 1

= (2n − 1)(2n − 3) . . . 5 · 3 · 1 · (2m)(2n − 2)(2n − 4) . . . 4 · 2
(2m)(2n − 2)(2n − 4) . . . 4 · 2

=
(2m)!

(2m)(2n − 2)(2n − 4) . . . 4 · 2

=
(2m)!
2mm!

Which means that if π has 2mk cycles of length k, we can produce

kmk (2mk)!
2mk mk!

factorizations restricted to those cycles. Multiplying over all the
possibly cycle lengths greater than one gives us the number of factor-
izations

∏
k cycle length

kmk (2mk)!
2mk mk!

We return to the first six Enigma permutations 1.1. After using the
factorization to factor AD, BE and CF, we know possible solutions
for A, B, C, D, E and F. The plugboard settings P were found out
from French spies, σ is the full cycle permutation. We can drop the
subscripts from M and L because we assume they don’t rotate for the
first six typed letters and from N because we know how to express its
rotations. We get:

A = P−1N−1M−1L−1RLMNP

B = P−1σ−1N−1σM−1L−1RLMσ−1NσP

C = P−1σ−2N−1σ2M−1L−1RLMσ−2Nσ2P

D = P−1σ−3N−1σ3M−1L−1RLMσ−3Nσ3P

E = P−1σ−4N−1σ4M−1L−1RLMσ−4Nσ4P

F = P−1σ−5N−1σ5M−1L−1RLMσ−5Nσ5P

(1.2)

The unknowns in equations 1.2 are M, L, R and N. Our goal is
to compute N. To simplify working with these equations, we define
G = M−1L−1RLM, move as many known permutations as we can to
the left side of the equations and name the left sides U, V, W, X, Y, Z:
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U := PAP−1 = N−1GN

V := σPBP−1σ−1 = N−1σGσ−1N

W := σ2PCP−1σ−2 = N−1σ2Gσ−2N

X := σ3PDP−1σ−3 = N−1σ3Gσ−3N

Y := σ4PEP−1σ−4 = N−1σ4Gσ−4N

Z := σ5PFP−1σ−5 = N−1σ5Gσ−5N

(1.3)

We now multiply subsequent equations to get the following five
equations:

UV = N−1GσGσ−1N

VW = N−1σGσGσ−2N

WX = N−1σ2GσGσ−3N

XY = N−1σ3GσGσ−4N

YZ = N−1σ4GσGσ−5N

(1.4)

Figure 1.5: An Enigma on display at
the Museum für Kommunikation Frankfurt
http://www.mfk-frankfurt.de

We eliminate G by inserting VW into the first equation, WX into the
second etc:

UV = N−1σ−1NVWNσN

VW = N−1σ−1NWXNσN

WX = N−1σ−1NXYNσN

XY = N−1σ−1NYZNσN

(1.5)

We define the new unknown H = N−1σ−1N and get

UV = H(VW)H−1

VW = H(WX)H−1

WX = H(XY)H−1

XY = H(YZ)H−1

(1.6)

So UV, VW etc are conjugated by H. Each of the four equations in
1.6 usually yielded several dozen solutions for H and usually there is
only one common solution to all four equations. This gave the code
breakers H and thus N, the internal wiring of the right rotor. The
second rotor was cracked the same way because the German Nazis
switched rotor positions every 3 months11 and a new rotor slid into 11 It is amazing how little things in cryp-

tography can trip up security of a sys-
tem and open the doors to attackers. The
German Nazis no doubt believed that by
switching rotors they would increase the
number of possible permutations (cor-
rect) and thus increase the security of
their system (incorrect).

the rightmost position. Rejewski and his team had daily keys for two
months which happened to overlap with one rotor switching. They
didn’t have daily keys for a longer period that would span two rotor

http://www.mfk-frankfurt.de
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switchings, so they couldn’t use this method to deduce the wiring of
the third rotor. It’s not clear how Rejewski and his colleagues cracked
the wiring of the third rotor and the wiring of the reflector12, but they 12 For more details and possible

solutions, see J. Vábek. On Re-
jewski’s solution of Enigma ci-
pher. In PROCEEDINGS OF WDS
2006. MATFYZPRESS, 2006 http:

//citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.186.9963&rank=1.

did. Using only two months worth of daily keys and intercepted mes-
sages the Polish cryptologists were able to deduce the internal wirings
of the rotors of the Enigma Machine and with that were able to build a
functioning replica of it. This achievement jumpstarted the effort of the
British team at Bletchley Park and eventually resulted in the capability
of the Allied Forces to listen in on all the transmissions encrypted with
Enigma.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.186.9963&rank=1


Bibliography

Michael Artin. Algebra. Addison Wesley, 2 edition, 2010. ISBN
0132413779.

J.W. Lawrence and F.A. Zorzitto. An Introduction to Abstract Alge-
bra: A Comprehensive Introduction. Cambridge Mathematical Text-
books. Cambridge University Press, 2021. ISBN 9781108836654. URL
https://books.google.com/books?id=PvQgEAAAQBAJ.

Marian Rejewski. How Polish mathematicians broke the Enigma ci-
pher. IEEE Annals of the History of Computing, 3(3):213–234, 1981.
ISSN 1058-6180.

J. Vábek. On Rejewski’s solution of Enigma cipher. In PROCEEDINGS
OF WDS 2006. MATFYZPRESS, 2006.

https://books.google.com/books?id=PvQgEAAAQBAJ

	Bibliography

