
Dutch National Flag

Problem ‘Dutch National Flag’ in Programming, The Derivation
of Algorithms1. 1 A. Kaldewaij. Programming, The Deriva-

tion of Algorithms. Prentice Hall, 1990

Problem

Write a program that swaps elements of an array containing
colors red, white and blue in such a way that the array’s final
state is in accordance with the Dutch National Flag.

We hope to solve this problem in linear time, going only once through
the array in a loop.

Our array is A[0, . . . , n) with

∀i : 0 ≤ i < n : A[i] ∈ { , , }

The desired final state of the array has 3 contiguous regions: the red
region, the white region and the blue region. Two indices r and w into
the array are sufficient to show the extent of each region. We define
post condition R

R ≡ (∀i : 0 ≤ i < r : A[i] =)

∧ (∀i : r ≤ i < w : A[i] =)

∧ (∀i : w ≤ i < n : A[i] =)

Our loop invariant P will be a relaxation2 of the post condition R. 2 Relaxation is a common technique to
derive a useful loop invariant from a
post condition. A common way to do
the relaxation is to introduce a variable
that in the beginning completely relaxes
the condition and that then gradually
changes and tightens the condition to its
final desired form.

We need to introduce a new index variable b to capture the notion of
unprocessed region:

2 uwe hoffmann

P ≡ (∀i : 0 ≤ i < r : A[i] =)

∧ (∀i : r ≤ i < w : A[i] =)

∧ (∀i : w ≤ i < b : A[i] has not been processed yet)

∧ (∀i : b ≤ i < n : A[i] =)

This allows us to assign values to our indices r, w and b that satisfy
P before the loop starts by extending the unprocessed region to be the
whole array and making the red, white and blue regions empty3: 3 This is the key insight for solving the

problem. Instead of having only three
color regions to work with, we introduce
a fourth region of unprocessed elements
and we gradually shrink it. In the begin-
ning this fourth region is the whole array
and the color regions are all three empty.
As the unprocessed region shrinks, the
color regions start to grow in such a way
that P always stays true. In the end
the unprocessed region is empty and the
three color regions are in their final de-
sired state thanks to P always holding.

r ← 0

w← 0

b← n

Our goal now is to maintain the loop invariant P while reducing the
unprocessed region by processing array elements and swapping them
until the unprocessed region is empty, so b−w = 0 or b = w. We then
have b = w ∧ P ⇒ R. The swapping needs to happen in such a way
that P always holds. We also want to make progress each time through
the loop, so we want b− w to get smaller each time through the loop.
We achieve progress by either increasing w or decreasing b. As long as
b > w we go through the loop.

We will do a case analysis of the state at the region borders of pro-
cessed and unprocessed regions of the array.

Let’s start with a simple case: A[w] = . Then moving w one
position to the right extends the white region, maintains P and shrinks
b−w, so makes progress. We write this down as one case for the loop
body:

if A[w] = then w← w + 1 endif

Because we are inside the loop we know that b > w, so A[b − 1]
exists, ie b− 1 is a valid index position. If A[b− 1] = , then we can
extend the blue region to the left and thus also shrink the unprocessed
region while maintaining P:

if A[b− 1] = then b← b− 1 endif

We have a couple more cases to cover.
If A[w] = then we can do our first swap: we swap A[w] with

A[b− 1] which will allow us after the swap to extend the blue region
to its left as done in the previous case. As before this maintains P and
is progress. Let’s capture this for the body of our loop:

math notes - dutch national flag 3

if A[w] = then A[w]↔ A[b− 1] ; b← b− 1 endif

If A[w] = then we can do the following swap: we swap A[r] with
A[w]. We can then extend the red region to its right. Whatever the
white region was (empty or not), it also shifts to the right by one (as a
region it hasn’t changed, just the first white element might have moved
to be the last element of the white region if the white region was not
empty):

if A[w] = then A[w]↔ A[r] ; r ← r + 1 ; w← w + 1 endif

These cases4 are sufficient to allow us to make progress while main- 4 These cases are biased towards making
progress from the left to the right. One
can make similar choices that cover more
cases on the right border of the unpro-
cessed region.

taining P. Because b− w is finite and we reduce it each time through
the loop, the loop will terminate. Our final program (in Go syntax) is:

r := 0

w := 0

b := 0

for w < b {
switch {
case A[w] == White : w = w + 1

case A[b−1] == Blue : b = b − 1

case A[w] == Blue : swap (A[w] , A[b − 1])
b = b − 1

case A[w] == Red : swap (A[w] , A[r])
r = r + 1

w = w + 1

}
}

The loop invariant P is maintained throughout and when the loop
exits, we have b = w which establishes R.

4 uwe hoffmann

Figure 1.1: Example of processing an ar-
ray. The first row is the initial state of
the array. Each row below is one time
through the loop. It is interesting to see
that even though condition R is satisfied
towards the end while b > w, the loop
still has to process elements until b = w,
not doing any more swaps but bringing
w and b ever closer.

Bibliography

A. Kaldewaij. Programming, The Derivation of Algorithms. Prentice Hall,
1990.

	Bibliography

