Completeness

Completeness and related properties ${ }^{1}$ are the topic in this section.
Consider the function $f: \mathrm{Q} \rightarrow \mathrm{Q}$ defined as follows:

$$
f(x)= \begin{cases}-1 & : x^{2}<2 \\ 1 & : \text { otherwise }\end{cases}
$$

Even though $\forall x \in \mathbb{Q}: f^{\prime}(x)=0$ the function f is not constant. Furthermore f is continuous in Q and $f(0)=-1<0$ and $f(2)=1>0$ but there is no $c \in \mathbb{Q}$ for which $f(c)=0$, so the Intermediate Value Property doesn't hold ${ }^{2}$.

Clearly \mathbb{R} has an additional property which distinguishes it from Q. This property cannot be deduced from the ordered field axioms ${ }^{3}$ because those are shared by Q and \mathbb{R} and we would be able to deduce it for Q too. It needs to be an additional property. The Dedekind Completeness Property is most commonly used as this additional property. We want to explore in this section how Dedekind Completeness relates to other properties also tied to what makes \mathbb{R} different from Q.

The properties we consider are ${ }^{4}$:
Dedekink Completeness Property DDC: Every non-empty real set bounded from above has a least upper bound.

Cut Property CP: Let A and B be two non-empty subsets of \mathbb{R} with $A \cap B=\varnothing$ and $A \cup B=\mathbb{R}$ such that $\forall a \in A$ and $b \in B: a<b$. Then there exists a cutpoint $c \in \mathbb{R}$ such that $\forall a \in A$ and $b \in B: a \leq c \leq b$.

Archimedean Property AP: $\forall x \in \mathbb{R}: \exists n \in \mathbb{N}$ with $n>x$.
Nested Interval Property NIP: Given sequence of non-empty intervals $I_{n}, n \in \mathbb{N}$ with $I_{n+1} \subseteq I_{n}$, then $\cap_{n \in \mathbb{N}} I_{n} \neq \varnothing$.

Monotone Convergence Property MC: A bounded monotone sequence converges.
${ }^{1}$ Exercise 2.6 .7 on page 71 from Stephen Abbott. Understanding Analysis. Springer, 2 edition, 2015. ISBN 978-1-4939-2711-1.

[^0][^1]Bolzano-Weierstrass Property BW: A bounded sequence has a convergent subsequence.

Cauchy Criterion CC: A sequence converges if and only if it is a Cauchy

 sequence.Ratio Test RT: If $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L<1$ then $\sum_{n=1}^{\infty} a_{n}$ converges 5 .
Intermediate Value Property IV: Given is a continuous function $f:[a, b] \rightarrow$ \mathbb{R} with $f(a)<0$ and $f(b)>0$. Then there exists $c \in[a, b]$ with $f(c)=0$.

Theorem 1.1. $D D C \Leftrightarrow C P$
Proof. (\Rightarrow) We have A and B two non-empty subsets of \mathbb{R} with $A \cap$ $B=\varnothing$ and $A \cup B=\mathbb{R}$ such that $\forall a \in A$ and $b \in B: a<b . B$ is non-empty, so there exists $b \in B$. This b is an upper bound of A, so A is bound from above. By the Dedekind Completeness Property $D D C$ there exists a least upper bound c. We claim that c is the desired cutpoint. Since c is the least upper bound we already have $A \leq c$. Assume $\exists b^{\prime} \in B$ with $b^{\prime}<c$. But b^{\prime} is an upper bound of A (since $A<B$) which means $c \leq b^{\prime}$ because c is the least upper bound. This is a contradiction, so $\forall b^{\prime} \in B: b^{\prime} \geq c$. It follows that $A \leq c \leq B$ and c is the cutpoint.
(\Leftarrow) We are given a non-empty set $A \subset \mathbb{R}$ bound from above, so there exists $b \in \mathbb{R}: A \leq b$. We define B be the set of upper bounds of A and let $A^{\prime}=\mathbb{R} \backslash B$. Both A^{\prime} and B are non-empty, $A^{\prime}<B$ and $A^{\prime} \cup B=\mathbb{R}^{6}$. By the Cut Property $C P$ there exists a cutpoint c with $A^{\prime} \leq c \leq B$. We claim that c is the least upper bound of A. Assume there exists $a \in A$ with $c<a$. Then for $c^{\prime}=\frac{c+a}{2}$ we have $c<c^{\prime}<a$. This implies that $c^{\prime} \in B$ so c^{\prime} is an upper bound of A which contradicts with $c^{\prime}<a$. We therefore have $\forall a \in A: a \leq c$ and c is an upper bound of A. Now assume there exists another upper bound d with $d<c$. But then $d \in A^{\prime}$ which contradicts the definition of A^{\prime} and B. So for all d upper bound of A we have $d \geq c$. This makes c the least upper bound of A.

Theorem 1.2. $D D C \Leftrightarrow N I P+A P^{7}$
Proof. (\Rightarrow) We have nested intervals $I_{n}=\left[a_{n}, b_{n}\right]$ with $I_{n+1} \subseteq I_{n}$. It follows that for all $n \in \mathbb{N}$ we have $a_{n+1} \geq a_{n}$ and $b_{n+1} \leq b_{n}$. Assume there exists $i, j \in \mathbb{N}$ such that $b_{i}<a_{j}$. We have three cases:

- $i=j$: then $a_{i} \leq b_{i}$ for interval I_{i} contradicting $b_{i}<a_{j}$.
- $i<j$: then $b_{i} \geq b_{j}$ which yields the inequality chain $b_{j} \leq b_{i}<a_{j}$, contradicting $a_{j} \leq b_{j}$ for interval I_{j}.
${ }^{5}$ The Ratio Test and the Intermediate Value Property feel like higher level properties that use infinite series and continuos functions. We will see in the following theorems how they relate to the other properties.

Abstract

${ }^{6}$ The set A is bounded from above so B is non-empty. If $A=\{a\}$ then A^{\prime} is non-empty (for example $(a-1) \in A^{\prime}$). If $|A|>1$ then one of the elements in A cannot be an upper bound of A which also implies A^{\prime} is non-empty. By definition $A^{\prime} \cup B=\mathbb{R}$. Assume there exists $a^{\prime} \in A^{\prime}$ and $b^{\prime} \in B$ such that $a^{\prime} \geq b^{\prime}$. This would make a^{\prime} an upper bound of A, so $a^{\prime} \in B$, a contradiction. It follows that $A^{\prime}<B$.

${ }^{7}$ The Nested Intervals Property NIP is not enough to achieve Dedekind Completeness $D D C$. For examples of fields that are not Archimedean see J. Propp. Real Analysis in Reverse. ArXiv eprints, April 2012. URL https://arxiv. org/abs/1204.4483. This theorem only shows that if the Archimedean Property $A P$ also holds then we can get back from NIP to DDC.

- $i>j$: then $a_{i} \geq a_{j}$ which yields the inequality chain $b_{i}<a_{j} \leq a_{i}$, contradicting $a_{i} \leq b_{i}$ for interval I_{i}.

This means that for all $i, j \in \mathbb{N}$ we have $a_{j} \leq b_{i}$. In other words, the b_{n} are upper bounds for the set $A=\left\{a_{n}: n \in \mathbb{N}\right\}$.

The set A is bound from above and non-empty, so according to $D D C$ there exists a least upper bound c. Since it is an upper bound we already have $\forall n \in \mathbb{N}: a_{n} \leq c$. Since c is the least upper bound and all b_{n} are upper bounds we also have $c \leq b_{n}$. It follows that $\forall n \in \mathbb{N}: c \in I_{n}$ or $c \in \cap_{n \in \mathbb{N}} I_{n}$. This proves $D D C \Rightarrow N I P$.

Assume there exists $x \in \mathbb{R}$ such that $\forall n \in \mathbb{N}: n \leq x$. This means that \mathbb{N} is bound from above. Let c be the least upper bound for \mathbb{N}. We have

$$
\forall n \in \mathbb{N}: n+1 \in \mathbb{N} \Rightarrow n+1 \leq c \Rightarrow n \leq c-1
$$

$c-1$ is an upper bound, c is the least upper bound so $c \leq c-1$, a contradiction. This proves $D D C \Rightarrow A P$.
(\Leftarrow) Consider the non-empty set $S \subseteq \mathbb{R}$ bounded from above by $b_{0} \in$ \mathbb{R}.

We want to apply NIP, so we define nested intervals around the upper bounds of S.
Proof Part 1.2.1. S is non-empty, so there exists $a_{0} \in S$. Define $I_{0}=$ $\left[a_{0}, b_{0}\right]$. The strategy now is to halve the interval and narrow it down but remain with the right endpoint of each interval "on top of" S and with the left endpoint in S.

Consider $m=\frac{a_{0}+b_{0}}{2}$. If $\left[m, b_{0}\right] \cap S=\varnothing$ then let $a_{1}=a_{0}$ and $b_{1}=m$. If on the other hand $\exists s \in\left[m, b_{0}\right] \cap S$ then let $a_{1}=s$ and $b_{1}=b_{0}$. Define $I_{1}=\left[a_{1}, b_{1}\right]$. Repeat this process to define all $I_{n}, n \in \mathbb{N}$.

The intervals I_{n} have the following properties:
$P_{1}: I_{n+1} \subseteq I_{n}$. This is visible from the definition of I_{n+1}. Its endpoints are either endpoints of I_{n} or are points from inside I_{n}.
$P_{2}: \forall n \in \mathbb{N}: b_{n}$ upper bound of S. We show this by induction on n. By choice b_{0} is an upper bound. Now assume that b_{n} is an upper bound. If $b_{n+1}=b_{n}$ then it is an upper bound. If $b_{n+1}=\frac{a_{n}+b_{n}}{2}$ then because $S \cap\left[b_{n+1}, b_{n}\right]=\varnothing$ and it also follows that b_{n+1} is an upper bound ${ }^{8}$.
$P_{3}: \forall n \in \mathbb{N}$: I_{n} non-empty. This also follows by induction and by the field axioms of \mathbb{R}.
$P_{4}: \forall n \in \mathbb{N}: a_{n} \in S$. This follows by induction and definition of left endpoints.
$P_{5}: \forall n \in \mathbb{N}:\left|I_{n}\right| \leq \frac{b_{0}-a_{0}}{2^{n}} .9$
${ }^{8}$ Assume b_{n+1} is not an upper bound of S, so there exists $s^{\prime} \in S$ with $s^{\prime}>$ b_{n+1}. But by induction b_{n} is an upper bound, which means $b_{n+1}<s^{\prime} \leq$ b_{n}, so $s^{\prime} \in\left[b_{n+1}, b_{n}\right]$, which contradicts $S \cap\left[b_{n+1}, b_{n}\right]=\varnothing$.

[^2]$P 1$ and P3 satisfy the requirements of NIP, so we know $\alpha \in \cap_{n \in \mathbb{N}} I_{n}$ exists.

We want to show that $\alpha=$ supS.
Proof Part 1.2.2. Assume α is not an upper bound of S. Then there exists $s \in S$ with $s>\alpha$. Let $\epsilon=s-\alpha>0$. Using the Archimedean property we choose $m \in \mathbb{N}$ such that $I_{m}=\left[a_{m}, b_{m}\right]$ with $\left|I_{m}\right|<\epsilon$ 10. Then $\alpha \in I_{m}$, but $s \notin I_{m}$ and furthermore $b_{m}<s$. This is a contradiction to property $P 2$, so α is an upper bound of S.

Now assume α is not the smallest upper bound of S. Then there exists an upper bound β of S with $\beta<\alpha$. Let $\epsilon=\alpha-\beta>0$. Again we choose $m \in \mathbb{N}$ such that $I_{m}=\left[a_{m}, b_{m}\right]$ with $\left|I_{m}\right|<\epsilon$. That pushes a_{m} between β and $\alpha: \beta<a_{m} \leq \alpha$. But according to property $P 4, a_{m} \in S$, so $\beta<a_{m}$ contradicts the fact that β is an upper bound of S. So α is the smallest upper bound of $S: \alpha=\sup S$. This proves $N I P+A P \Rightarrow D D C$

Theorem 1.3. $D D C \Leftrightarrow M C$
Proof. (\Rightarrow) Given is a monotone increasing sequence $\left(a_{n}\right)$ bound from above. We define $A=\left\{a_{n}: n \in \mathbb{N}\right\}$, a set that is bound from above. From $D D C$ it follows that least upper bound c of A exists. We want to show that $\lim _{n \rightarrow \infty} a_{n}=c$. For all $\epsilon>0$ we have $c-\epsilon<c$, so $c-\epsilon$ cannot be an upper bound of A (c is the least upper bound). That means that there exists $n_{0} \in \mathbb{N}$ with $a_{n_{0}}>c-\epsilon$. Since the sequence is monotone increasing, we have

$$
\forall n \geq n_{0}: a_{n} \geq a_{n_{0}}>c-\epsilon \Rightarrow\left|c-a_{n}\right|<\epsilon
$$

which proves $a_{n} \rightarrow c$.
(\Leftarrow) We first want to show $M C \Rightarrow A P$. Given $M C$ assume that $A P$ doesn't hold, so there exists $x \in \mathbb{R}$ bigger than any natural number. This means x is an upper bound for the sequence $a_{n}=n$, a monotone increasing sequence. From $M C$ it then follows that a_{n} converges to a limit c. The sequence $b_{n}=n+1$ is a_{n} shifted to the left, so it is also convergent with the same limit c. Taking the limit on the sequence equation $b_{n}=a_{n}+1$ we get $c=c+1$, a contradiction. So $M C \Rightarrow A P$.

To show that $M C \Rightarrow D D C$ we are given non-empty set S with $a_{0} \in S$ bound from above by $b_{0} \in \mathbb{R}$. We define the same nested intervals as in the Proof Part 1.2.1 of the proof of Theorem 1.2.

The same properties P_{1} to P_{5} for I_{n} as stated in Proof Part 1.2.1 hold. The sequence $\left(a_{n}\right)$ is in S and monotone increasing and the sequence $\left(b_{n}\right)$ is made of upper bounds of S and is monotone decreasing. (a_{n}) is bound from above and monotone so according to $M C$ it converges to a limit α.
${ }^{10}$ We use property $P 5$. From $\left|I_{m}\right| \leq$
$\underline{b_{0}-a_{0}}<\epsilon$ we get $m>\log _{2}\left(\underline{b_{0}-a_{0}}\right)$. $\frac{b_{0}-a_{0}}{2^{m}}<\epsilon$, we get $m>\log _{2}\left(\frac{b_{0}-a_{0}}{\epsilon}\right)$.

We want to show that $\alpha=$ supS. We will use the exact same argument as in the Proof Part 1.2.2 of the proof of Theorem 1.2 ${ }^{11}$. This proves $M C \Rightarrow D D C$

Theorem 1.4. $D D C \Leftrightarrow B W+A P^{12}$
Proof. (\Rightarrow) We have already seen $D D C \Rightarrow A P$ (Theorem 1.2).
Proof Part 1.4.1. To prove $D D C \Rightarrow B W$ we are given a bounded sequence $\left(s_{n}\right)$:

$$
\exists a_{0}, b_{0} \in \mathbb{R} \text { such that } \forall n \in \mathbb{N}: a_{0} \leq s_{n} \leq b_{0}
$$

We define interval $I_{0}=\left[a_{0}, b_{0}\right]$ and divide it in half at $c=\frac{a_{0}+b_{0}}{2}$. At least one of the two intervals $\left[a_{0}, c\right],\left[c, b_{0}\right]$ has an infinite number of elements of the sequence $s_{n}{ }^{13}$. Define I_{1} to be either $\left[a_{0}, c\right]$ or $\left[c, b_{0}\right]$ with an infinite number of elements of s_{n}. We repeat this process recursively, defining I_{m} to be one of the halves of I_{m-1} that has an infinite number of elements of $\left(s_{n}\right)$. We get a sequence of nested intervals $\left(I_{m}\right)$ of decreasing length $\left|I_{m}\right|=\frac{a_{0}+b_{0}}{2^{m}}$.

We define $f: \mathbb{N} \rightarrow \mathbb{N}$ recursively as

$$
\left\{\begin{array}{l}
f(1)=1 \\
f(n)=\min \left\{i>f(n-1): s_{i} \in I_{n-1}\right\}
\end{array}\right.
$$

The set $\left\{i>f(n-1): s_{i} \in I_{n-1}\right\}$ is a non-empty, infinite subset ${ }^{14}$ of \mathbb{N}, so its minimum exists and f is well defined and by definition strictly monotone increasing. We define subsequence $\left(s_{n}^{\prime}\right)$ as $s_{n}^{\prime}=$ $s_{f(n)}$, well defined because f is strictly monotone increasing.

Proof Part 1.4.2. From $D D C$ we know that NIP holds so $\alpha \in \cap_{m \in \mathbb{N}} I_{m}$ exists. We claim that $s_{n}^{\prime} \rightarrow \alpha$.

Because of $A P$ we have for all $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $\left|I_{n_{0}}\right|<\epsilon$. We have $\alpha \in I_{n_{0}}$ and for all $n>f^{-1}\left(n_{0}\right): s_{n}^{\prime} \in I_{n_{0}}$. This means for all $n>f^{-1}\left(n_{0}\right):\left|s_{n}^{\prime}-\alpha\right|<\epsilon$ and $\left(s_{n}^{\prime}\right)$ is a subsequence of $\left(s_{n}\right)$ that converges to α.
(\Leftarrow)
Proof Part 1.4.3. We are going to prove this direction by going through $N I P$. Given nested non-empty intervals $I_{n+1} \subseteq I_{n}$ we define sequence $\left(s_{n}\right)$ by choosing an arbitrary element from each I_{n} and setting it to be s_{n}. According to $B W$ there exists a subsequence $\left(s_{n}^{\prime}\right)$ of $\left(s_{n}\right)$ that converges $s_{n}^{\prime} \rightarrow c$. We claim that $c \in \cap_{n \in \mathbb{N}} I_{n}$.

Proof Part 1.4.4. Assume $c \notin \cap_{n \in \mathbb{N}} I_{n}$. Then there must exist $n_{0} \in \mathbb{N}$ such that $c \notin I_{n_{0}}=\left[a_{n_{0}}, b_{n_{0}}\right]$. Either $c<a_{n_{0}}$ or $c>b_{n_{0}}$. Let's consider $c<a_{n_{0}}$ (the other case is very similar). $\epsilon=\frac{a_{n_{0}}-c}{2}>0$. We have $s_{n}^{\prime} \rightarrow c$, so there exists n_{1} such that $\forall n>n_{1}:\left|s_{n}^{\prime}-c\right|<\epsilon$. So for
${ }^{11}$ The only difference in the two proofs is that in this proof MC ensures the existence of α and in the previous proof it was NIP.
${ }^{12}$ Once again Bolzano-Weierstrass BW is not enough to get back to Dedekind Completeness $D D C$. We need the field to be Archimedean $A P$.
${ }^{13}$ Otherwise $\left(s_{n}\right)$ would not be an infinite sequence.
${ }^{14}$ By definition of I_{n-1} there are an infinite number of elements s_{i} in I_{n-1}, so there are an infinite number of indices i in $\left\{i>f(n-1): s_{i} \in I_{n-1}\right\}$. Also any non-empty subset of \mathbb{N} has a smallest element.
$\forall n>\max \left(n_{0}, n_{1}\right): s_{n}^{\prime}<c+\epsilon<a_{n_{0}}$. But $\left(s_{n}^{\prime}\right)$ is a subsequence of $\left(s_{n}\right)$ so there must exist $m \in \mathbb{N}$ with $f^{-1}(m)>\max \left(n_{0}, n_{1}\right)$. We have $s_{m}^{\prime}=s_{f^{-1}(m)} \in I_{f^{-1}(m)}$. So $s_{m}^{\prime} \in I_{f^{-1}(m)} \subseteq I_{n_{0}}$ and $s_{m}^{\prime}<a_{n_{0}}$ which is a contradiction. This means $c \in \cap_{n \in \mathbb{N}} I_{n}$ and $B W \Rightarrow$ NIP which together with $A P$ gets us to $D D C$ according to Theorem 1.2.

Theorem 1.5. $D D C \Leftrightarrow C C+A P^{15}$
Proof. (\Rightarrow) We have already seen $D D C \Rightarrow A P$ (Theorem 1.2). To prove $D D C \Rightarrow C C$ we are given a Cauchy sequence $\left(a_{n}\right)$. We first show that $\left(a_{n}\right)$ is bounded. From the definition of a Cauchy sequence ${ }^{16}$ we get for $\epsilon=1$ there exists $N \in \mathbb{N}$ such that $\forall m \geq N:\left|a_{n}-a_{N}\right|<1 \Rightarrow$ $\left|a_{n}\right|<1+\left|a_{N}\right|$. Define $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,\left|a_{N}\right|+1\right\}$ and we have $\forall n \in \mathbb{N}:\left|a_{n}\right|<M$.

The Cauchy sequence $\left(a_{n}\right)$ is bounded so using $D D C \Rightarrow B W$ from Theorem 1.4 we know there is a subsequence of $\left(a_{n}\right)$ that converges. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the strictly monotone increasing function that defines the converging subsequence $a_{n}^{\prime}=a_{f(n)}$ and let $\lim _{n \rightarrow \infty} a_{n}^{\prime}=c$.

For all $\epsilon>0$ we have:

$$
\exists n_{1} \in \mathbb{N} \text { such that } \forall n \geq n_{1}:\left|a_{n}-a_{n_{1}}\right|<\frac{\epsilon}{2}
$$

and then

$$
\exists n_{2} \geq f^{-1}\left(n_{1}\right) \text { such that } \forall n \geq n_{2}:\left|a_{n}^{\prime}-c\right|<\frac{\epsilon}{2}
$$

So

$$
\begin{aligned}
\forall n \geq n_{2}:\left|a_{n}-c\right| & =\left|a_{n}-a_{n_{2}}^{\prime}+a_{n_{2}}^{\prime}-c\right| \leq\left|a_{n}-a_{n_{2}}^{\prime}\right|+\left|a_{n_{2}}^{\prime}-c\right| \\
& =\left|a_{n}-a_{f\left(n_{2}\right)}\right|+\left|a_{n_{2}}^{\prime}-c\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

It means $\left(a_{n}\right)$ converges to c and $D D C \Rightarrow C C+A P$.
(\Leftarrow) We will show that $C C+A P \Rightarrow B W$. We are given a bounded sequence $\left(s_{n}\right)$ and we use the same subsequence construction as in the Proof Part 1.4.1 of Theorem 1.4. We claim that the so constructed subsequence $\left(s_{n}^{\prime}\right)$ is a Cauchy sequence. Indeed for all $\epsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|I_{N}\right|<\epsilon$ (again we need $A P$ here). We then have:

$$
\forall m, n \geq N: s_{n}^{\prime}, s_{m}^{\prime} \in I_{N} \Rightarrow\left|s_{n}^{\prime}-s_{m}^{\prime}\right| \leq\left|I_{N}\right|<\epsilon
$$

So $\left(s_{n}^{\prime}\right)$ is a Cauchy sequence and by CC it converges which means that $\left(s_{n}\right)$ has a convergent subsequence.

Bibliography

Stephen Abbott. Understanding Analysis. Springer, 2 edition, 2015. ISBN 978-1-4939-2711-1.
J. Propp. Real Analysis in Reverse. ArXiv e-prints, April 2012. URL https://arxiv.org/abs/1204.4483.

[^0]: ${ }^{2}$ The Ancient Greeks already discovered that $\sqrt{2} \notin \mathrm{Q}$.
 ${ }^{3}$ We mean here the axioms of Addition and Multiplication (Commutativity, Associativity, etc) and Order axioms (Trichotemy, Transitivity, etc). See http://homepages.math.uic. edu/~kauffman/axioms1.pdf

[^1]: ${ }^{4}$ For a more detailed view on this topic and counterexamples of ordered fields without some of these properties see J. Propp. Real Analysis in Reverse. ArXiv e-prints, April 2012. URL https: //arxiv.org/abs/1204.4483.

[^2]: ${ }^{9}$ We show this by induction on n. Base case $n=0$ holds by definition of I_{0}. Assume $\left|I_{n}\right| \leq \frac{b_{0}-a_{0}}{2^{n}}$. For I_{n+1} we observe that its length is either half that of I_{n} or less than half when $\left[\frac{a_{n}+b_{n}}{2}, b_{n}\right] \cap S \neq \varnothing$

