
Completeness

Completeness and related properties1 are the topic in this section. 1 Exercise 2.6.7 on page 71 from
Stephen Abbott. Understanding Anal-
ysis. Springer, 2 edition, 2015. ISBN
978-1-4939-2711-1.Consider the function f : Q → Q defined as follows:

f (x) =

−1 : x2 < 2

1 : otherwise

Even though ∀x ∈ Q : f ′(x) = 0 the function f is not constant.
Furthermore f is continuous in Q and f (0) = −1 < 0 and f (2) = 1 > 0
but there is no c ∈ Q for which f (c) = 0, so the Intermediate Value
Property doesn’t hold2. 2 The Ancient Greeks already discovered

that
√

2 /∈ Q.Clearly R has an additional property which distinguishes it from Q.
This property cannot be deduced from the ordered field axioms3 be- 3 We mean here the axioms of Ad-

dition and Multiplication (Commu-
tativity, Associativity, etc) and Or-
der axioms (Trichotemy, Transitivity,
etc). See http://homepages.math.uic.

edu/~kauffman/axioms1.pdf

cause those are shared by Q and R and we would be able to deduce it
for Q too. It needs to be an additional property. The Dedekind Com-
pleteness Property is most commonly used as this additional property.
We want to explore in this section how Dedekind Completeness relates
to other properties also tied to what makes R different from Q.

The properties we consider are4: 4 For a more detailed view on this topic
and counterexamples of ordered fields
without some of these properties see
J. Propp. Real Analysis in Reverse.
ArXiv e-prints, April 2012. URL https:
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Dedekink Completeness Property DDC: Every non-empty real set bounded
from above has a least upper bound.

Cut Property CP: Let A and B be two non-empty subsets of R with
A∩ B = ∅ and A∪ B = R such that ∀a ∈ A and b ∈ B : a < b. Then
there exists a cutpoint c ∈ R such that ∀a ∈ A and b ∈ B : a ≤ c ≤ b.

Archimedean Property AP: ∀x ∈ R : ∃n ∈ N with n > x.

Nested Interval Property NIP: Given sequence of non-empty intervals
In, n ∈ N with In+1 ⊆ In, then ∩n∈N In ̸= ∅.

Monotone Convergence Property MC: A bounded monotone sequence
converges.

http://homepages.math.uic.edu/~kauffman/axioms1.pdf
http://homepages.math.uic.edu/~kauffman/axioms1.pdf
https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483


2 uwe hoffmann

Bolzano-Weierstrass Property BW: A bounded sequence has a conver-
gent subsequence.

Cauchy Criterion CC: A sequence converges if and only if it is a Cauchy
sequence.

Ratio Test RT: If limn→∞
|an+1|
|an | = L < 1 then ∑∞

n=1 an converges5. 5 The Ratio Test and the Intermediate Value
Property feel like higher level proper-
ties that use infinite series and contin-
uos functions. We will see in the follow-
ing theorems how they relate to the other
properties.

Intermediate Value Property IV: Given is a continuous function f : [a, b] →
R with f (a) < 0 and f (b) > 0. Then there exists c ∈ [a, b] with
f (c) = 0.

Theorem 1.1. DDC ⇔ CP

Proof. (⇒) We have A and B two non-empty subsets of R with A ∩
B = ∅ and A ∪ B = R such that ∀a ∈ A and b ∈ B : a < b. B is
non-empty, so there exists b ∈ B. This b is an upper bound of A,
so A is bound from above. By the Dedekind Completeness Property
DDC there exists a least upper bound c. We claim that c is the desired
cutpoint. Since c is the least upper bound we already have A ≤ c.
Assume ∃b′ ∈ B with b′ < c. But b′ is an upper bound of A (since
A < B) which means c ≤ b′ because c is the least upper bound. This
is a contradiction, so ∀b′ ∈ B : b′ ≥ c. It follows that A ≤ c ≤ B and c
is the cutpoint.
(⇐) We are given a non-empty set A ⊂ R bound from above, so there
exists b ∈ R : A ≤ b. We define B be the set of upper bounds of
A and let A′ = R \ B. Both A′ and B are non-empty, A′ < B and
A′ ∪ B = R6. By the Cut Property CP there exists a cutpoint c with 6 The set A is bounded from above so

B is non-empty. If A = {a} then A′ is
non-empty (for example (a − 1) ∈ A′). If
|A| > 1 then one of the elements in A
cannot be an upper bound of A which
also implies A′ is non-empty. By defi-
nition A′ ∪ B = R. Assume there exists
a′ ∈ A′ and b′ ∈ B such that a′ ≥ b′.
This would make a′ an upper bound of
A, so a′ ∈ B, a contradiction. It follows
that A′ < B.

A′ ≤ c ≤ B. We claim that c is the least upper bound of A. Assume
there exists a ∈ A with c < a. Then for c′ = c+a

2 we have c < c′ < a.
This implies that c′ ∈ B so c′ is an upper bound of A which contradicts
with c′ < a. We therefore have ∀a ∈ A : a ≤ c and c is an upper bound
of A. Now assume there exists another upper bound d with d < c. But
then d ∈ A′ which contradicts the definition of A′ and B. So for all d
upper bound of A we have d ≥ c. This makes c the least upper bound
of A.

Theorem 1.2. DDC ⇔ NIP + AP7 7 The Nested Intervals Property NIP is
not enough to achieve Dedekind Com-
pleteness DDC. For examples of fields
that are not Archimedean see J. Propp.
Real Analysis in Reverse. ArXiv e-
prints, April 2012. URL https://arxiv.

org/abs/1204.4483. This theorem only
shows that if the Archimedean Property
AP also holds then we can get back from
NIP to DDC.

Proof. (⇒) We have nested intervals In = [an, bn] with In+1 ⊆ In. It
follows that for all n ∈ N we have an+1 ≥ an and bn+1 ≤ bn. Assume
there exists i, j ∈ N such that bi < aj. We have three cases:

• i = j: then ai ≤ bi for interval Ii contradicting bi < aj.

• i < j: then bi ≥ bj which yields the inequality chain bj ≤ bi < aj,
contradicting aj ≤ bj for interval Ij.

https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483
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• i > j: then ai ≥ aj which yields the inequality chain bi < aj ≤ ai,
contradicting ai ≤ bi for interval Ii.

This means that for all i, j ∈ N we have aj ≤ bi. In other words, the bn

are upper bounds for the set A = {an : n ∈ N}.
The set A is bound from above and non-empty, so according to

DDC there exists a least upper bound c. Since it is an upper bound
we already have ∀n ∈ N : an ≤ c. Since c is the least upper bound
and all bn are upper bounds we also have c ≤ bn. It follows that
∀n ∈ N : c ∈ In or c ∈ ∩n∈N In. This proves DDC ⇒ NIP.

Assume there exists x ∈ R such that ∀n ∈ N : n ≤ x. This means
that N is bound from above. Let c be the least upper bound for N. We
have

∀n ∈ N : n + 1 ∈ N ⇒ n + 1 ≤ c ⇒ n ≤ c − 1

c − 1 is an upper bound, c is the least upper bound so c ≤ c − 1, a
contradiction. This proves DDC ⇒ AP.
(⇐) Consider the non-empty set S ⊆ R bounded from above by b0 ∈
R.

We want to apply NIP, so we define nested intervals around the
upper bounds of S.

Proof Part 1.2.1. S is non-empty, so there exists a0 ∈ S. Define I0 =

[a0, b0]. The strategy now is to halve the interval and narrow it down
but remain with the right endpoint of each interval “on top of” S and
with the left endpoint in S.

Consider m = a0+b0
2 . If [m, b0] ∩ S = ∅ then let a1 = a0 and b1 = m.

If on the other hand ∃s ∈ [m, b0]∩ S then let a1 = s and b1 = b0. Define
I1 = [a1, b1]. Repeat this process to define all In, n ∈ N.

The intervals In have the following properties:

P1 : In+1 ⊆ In. This is visible from the definition of In+1. Its endpoints
are either endpoints of In or are points from inside In.

P2 : ∀n ∈ N : bn upper bound of S. We show this by induction on n.
By choice b0 is an upper bound. Now assume that bn is an upper
bound. If bn+1 = bn then it is an upper bound. If bn+1 = an+bn

2 then
because S ∩ [bn+1, bn] = ∅ and it also follows that bn+1 is an upper
bound 8. 8 Assume bn+1 is not an upper bound

of S, so there exists s′ ∈ S with s′ >
bn+1. But by induction bn is an up-
per bound, which means bn+1 < s′ ≤
bn, so s′ ∈ [bn+1, bn], which contradicts
S ∩ [bn+1, bn] = ∅.

P3 : ∀n ∈ N: In non-empty. This also follows by induction and by the
field axioms of R.

P4 : ∀n ∈ N : an ∈ S. This follows by induction and definition of left
endpoints.

P5 : ∀n ∈ N : |In| ≤ b0−a0
2n . 9 9 We show this by induction on n. Base

case n = 0 holds by definition of I0. As-
sume |In| ≤ b0−a0

2n . For In+1 we observe
that its length is either half that of In or
less than half when [ an+bn

2 , bn] ∩ S ̸= ∅
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P1 and P3 satisfy the requirements of NIP, so we know α ∈ ∩n∈N In

exists.
We want to show that α = supS.

Proof Part 1.2.2. Assume α is not an upper bound of S. Then there
exists s ∈ S with s > α. Let ϵ = s − α > 0. Using the Archimedean
property we choose m ∈ N such that Im = [am, bm] with |Im| < ϵ
10. Then α ∈ Im, but s /∈ Im and furthermore bm < s. This is a 10 We use property P5. From |Im| ≤

b0−a0
2m < ϵ, we get m > log2(

b0−a0
ϵ ).contradiction to property P2, so α is an upper bound of S.

Now assume α is not the smallest upper bound of S. Then there
exists an upper bound β of S with β < α. Let ϵ = α − β > 0. Again we
choose m ∈ N such that Im = [am, bm] with |Im| < ϵ. That pushes am

between β and α: β < am ≤ α. But according to property P4, am ∈ S,
so β < am contradicts the fact that β is an upper bound of S. So α is the
smallest upper bound of S: α = supS. This proves NIP + AP ⇒ DDC

Theorem 1.3. DDC ⇔ MC

Proof. (⇒) Given is a monotone increasing sequence (an) bound from
above. We define A = {an : n ∈ N}, a set that is bound from above.
From DDC it follows that least upper bound c of A exists. We want
to show that limn→∞ an = c. For all ϵ > 0 we have c − ϵ < c, so c − ϵ

cannot be an upper bound of A (c is the least upper bound). That
means that there exists n0 ∈ N with an0 > c − ϵ. Since the sequence is
monotone increasing, we have

∀n ≥ n0 : an ≥ an0 > c − ϵ ⇒ |c − an| < ϵ

which proves an → c.
(⇐) We first want to show MC ⇒ AP. Given MC assume that AP
doesn’t hold, so there exists x ∈ R bigger than any natural number.
This means x is an upper bound for the sequence an = n, a monotone
increasing sequence. From MC it then follows that an converges to a
limit c. The sequence bn = n + 1 is an shifted to the left, so it is also
convergent with the same limit c. Taking the limit on the sequence
equation bn = an + 1 we get c = c + 1, a contradiction. So MC ⇒ AP.

To show that MC ⇒ DDC we are given non-empty set S with a0 ∈ S
bound from above by b0 ∈ R. We define the same nested intervals as
in the Proof Part 1.2.1 of the proof of Theorem 1.2.

The same properties P1 to P5 for In as stated in Proof Part 1.2.1 hold.
The sequence (an) is in S and monotone increasing and the sequence
(bn) is made of upper bounds of S and is monotone decreasing. (an)

is bound from above and monotone so according to MC it converges
to a limit α.
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We want to show that α = supS. We will use the exact same ar-
gument as in the Proof Part 1.2.2 of the proof of Theorem 1.211. This 11 The only difference in the two proofs

is that in this proof MC ensures the ex-
istence of α and in the previous proof it
was NIP.

proves MC ⇒ DDC

Theorem 1.4. DDC ⇔ BW + AP12
12 Once again Bolzano-Weierstrass BW
is not enough to get back to Dedekind
Completeness DDC. We need the field
to be Archimedean AP.

Proof. (⇒) We have already seen DDC ⇒ AP (Theorem 1.2).

Proof Part 1.4.1. To prove DDC ⇒ BW we are given a bounded se-
quence (sn):

∃a0, b0 ∈ R such that ∀n ∈ N : a0 ≤ sn ≤ b0

We define interval I0 = [a0, b0] and divide it in half at c = a0+b0
2 .

At least one of the two intervals [a0, c], [c, b0] has an infinite number
of elements of the sequence sn

13. Define I1 to be either [a0, c] or [c, b0] 13 Otherwise (sn) would not be an infi-
nite sequence.with an infinite number of elements of sn. We repeat this process re-

cursively, defining Im to be one of the halves of Im−1 that has an infinite
number of elements of (sn). We get a sequence of nested intervals (Im)

of decreasing length |Im| = a0+b0
2m .

We define f : N → N recursively as f (1) = 1

f (n) = min{i > f (n − 1) : si ∈ In−1}

The set {i > f (n − 1) : si ∈ In−1} is a non-empty, infinite subset14 14 By definition of In−1 there are an in-
finite number of elements si in In−1, so
there are an infinite number of indices i
in {i > f (n − 1) : si ∈ In−1}. Also any
non-empty subset of N has a smallest el-
ement.

of N, so its minimum exists and f is well defined and by definition
strictly monotone increasing. We define subsequence (s′n) as s′n =

s f (n), well defined because f is strictly monotone increasing.

Proof Part 1.4.2. From DDC we know that NIP holds so α ∈ ∩m∈N Im

exists. We claim that s′n → α.
Because of AP we have for all ϵ > 0 there exists n0 ∈ N such that

|In0 | < ϵ. We have α ∈ In0 and for all n > f−1(n0) : s′n ∈ In0 . This
means for all n > f−1(n0) : |s′n − α| < ϵ and (s′n) is a subsequence of
(sn) that converges to α.

(⇐)

Proof Part 1.4.3. We are going to prove this direction by going through
NIP. Given nested non-empty intervals In+1 ⊆ In we define sequence
(sn) by choosing an arbitrary element from each In and setting it to
be sn. According to BW there exists a subsequence (s′n) of (sn) that
converges s′n → c. We claim that c ∈ ∩n∈N In.

Proof Part 1.4.4. Assume c /∈ ∩n∈N In. Then there must exist n0 ∈ N

such that c /∈ In0 = [an0 , bn0 ]. Either c < an0 or c > bn0 . Let’s consider
c < an0 (the other case is very similar). ϵ =

an0−c
2 > 0. We have

s′n → c, so there exists n1 such that ∀n > n1 : |s′n − c| < ϵ. So for
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∀n > max(n0, n1) : s′n < c + ϵ < an0 . But (s′n) is a subsequence of
(sn) so there must exist m ∈ N with f−1(m) > max(n0, n1). We have
s′m = s f−1(m) ∈ I f−1(m). So s′m ∈ I f−1(m) ⊆ In0 and s′m < an0 which is a
contradiction. This means c ∈ ∩n∈N In and BW ⇒ NIP which together
with AP gets us to DDC according to Theorem 1.2.

Theorem 1.5. DDC ⇔ CC + AP15 15 As seen before with NIP and BW
the Cauchy Criterion CC is not enough
to get back to Dedekind Complete-
ness DDC. We need the field to be
Archimedean AP.

Proof. (⇒) We have already seen DDC ⇒ AP (Theorem 1.2). To prove
DDC ⇒ CC we are given a Cauchy sequence (an). We first show that
(an) is bounded. From the definition of a Cauchy sequence16 we get 16 A sequence (an) is a Cauchy sequence

if ∀ϵ > 0 : ∃N ∈ N such that ∀m, n ≥
N : |am − an| < ϵ.

for ϵ = 1 there exists N ∈ N such that ∀m ≥ N : |an − aN | < 1 ⇒
|an| < 1 + |aN |. Define M = max{|a1|, |a2|, . . . , |aN−1|, |aN | + 1} and
we have ∀n ∈ N : |an| < M.

The Cauchy sequence (an) is bounded so using DDC ⇒ BW from
Theorem 1.4 we know there is a subsequence of (an) that converges.
Let f : N → N be the strictly monotone increasing function that de-
fines the converging subsequence a′n = a f (n) and let limn→∞ a′n = c.

For all ϵ > 0 we have:

∃n1 ∈ N such that ∀n ≥ n1 : |an − an1 | <
ϵ

2

and then

∃n2 ≥ f−1(n1) such that ∀n ≥ n2 : |a′n − c| < ϵ

2

So

∀n ≥ n2 : |an − c| = |an − a′n2
+ a′n2

− c| ≤ |an − a′n2
|+ |a′n2

− c|

= |an − a f (n2)
|+ |a′n2

− c| ≤ ϵ

2
+

ϵ

2
= ϵ

It means (an) converges to c and DDC ⇒ CC + AP.
(⇐) We will show that CC + AP ⇒ BW. We are given a bounded
sequence (sn) and we use the same subsequence construction as in
the Proof Part 1.4.1 of Theorem 1.4. We claim that the so constructed
subsequence (s′n) is a Cauchy sequence. Indeed for all ϵ > 0 there
exists N ∈ N such that |IN | < ϵ (again we need AP here). We then
have:

∀m, n ≥ N : s′n, s′m ∈ IN ⇒ |s′n − s′m| ≤ |IN | < ϵ

So (s′n) is a Cauchy sequence and by CC it converges which means
that (sn) has a convergent subsequence.

Finish up.
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