Completeness

CoMPLETENESS and related properties’ are the topic in this section.
Consider the function f : Q — Q defined as follows:

.2
Flx) = -1 :x <2'
1 :otherwise

Even though Vx € Q : f/(x) = 0 the function f is not constant.
Furthermore f is continuousinQ and f(0) = —1 < 0and f(2) =1 >0
but there is no ¢ € Q for which f(c) = 0, so the Intermediate Value
Property doesn’t hold?.

Clearly R has an additional property which distinguishes it from Q.
This property cannot be deduced from the ordered field axioms3 be-
cause those are shared by Q and R and we would be able to deduce it
for Q too. It needs to be an additional property. The Dedekind Com-
pleteness Property is most commonly used as this additional property.
We want to explore in this section how Dedekind Completeness relates
to other properties also tied to what makes R different from Q.

The properties we consider are?:

Dedekink Completeness Property DDC: Every non-empty real set bounded

from above has a least upper bound.

Cut Property CP: Let A and B be two non-empty subsets of R with
ANB=®and AUB =RsuchthatVa € Aandb € B:a < b. Then
there exists a cutpoint ¢ € RsuchthatVa € Aandbe B:a <c <b.

Archimedean Property AP:Vx € R :3dn € N withn > x.

Nested Interval Property NIP: Given sequence of non-empty intervals
I,,n € N with I,, 1 C I;, then NyenIy # @.

Monotone Convergence Property MC: A bounded monotone sequence
converges.

*Exercise 2.6.7 on page 71 from
Stephen Abbott.  Understanding Anal-
ysis. Springer, 2 edition, 2015. ISBN
978-1-4939-2711-1.

> The Ancient Greeks already discovered

that v2 ¢ Q.

3We mean here the axioms of Ad-
dition and Multiplication (Commu-
tativity, Associativity, etc) and Or-
der axioms (Trichotemy, Transitivity,
etc). See http://homepages.math.uic.
edu/~kauffman/axiomsl.pdf

4 For a more detailed view on this topic
and counterexamples of ordered fields
without some of these properties see
J. Propp. Real Analysis in Reverse.
ArXiv e-prints, April 2012. URL https:
//arxiv.org/abs/1204.4483.


http://homepages.math.uic.edu/~kauffman/axioms1.pdf
http://homepages.math.uic.edu/~kauffman/axioms1.pdf
https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483
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Bolzano-Weierstrass Property BW: A bounded sequence has a conver-
gent subsequence.

Cauchy Criterion CC: A sequence converges if and only if it is a Cauchy
sequence.

Ratio Test RT: If lim; e "T;* ‘1‘ =L < 1then Y a, converges>.

Intermediate Value Property IV:Given is a continuous function f : [a,b] —

R with f(a) < 0 and f(b) > 0. Then there exists ¢ € [a,b] with
fle)=o0.

Theorem 1.1. DDC < CP

Proof. (=) We have A and B two non-empty subsets of R with AN
B=@and AUB = Rsuch that Va € Aandb € B:a < b. Bis
non-empty, so there exists b € B. This b is an upper bound of A,
so A is bound from above. By the Dedekind Completeness Property
DDC there exists a least upper bound c. We claim that c is the desired
cutpoint. Since c is the least upper bound we already have A < c.
Assume 30’ € B with b’ < c. But V' is an upper bound of A (since
A < B) which means ¢ < b’ because c is the least upper bound. This
is a contradiction, so Vb’ € B : b’ > c. It follows that A < c < Band c
is the cutpoint.

(<) We are given a non-empty set A C R bound from above, so there
exists b € R : A < b. We define B be the set of upper bounds of
A and let A’ = R\ B. Both A’ and B are non-empty, A’ < B and
A’UB = R®. By the Cut Property CP there exists a cutpoint ¢ with
A" < ¢ < B. We claim that ¢ is the least upper bound of A. Assume
there exists 2 € A with ¢ < a. Then for ¢ = <§* we have ¢ < ¢’ < a.
This implies that ¢’ € B so ¢’ is an upper bound of A which contradicts
with ¢/ < a. We therefore have Va € A : a < ¢ and c is an upper bound
of A. Now assume there exists another upper bound d with d < c. But
then d € A’ which contradicts the definition of A" and B. So for all d
upper bound of A we have d > c. This makes c the least upper bound
of A. O

Theorem 1.2. DDC < NIP + AP7

Proof. (=) We have nested intervals I, = [ay,b,] with ;1 C L,. It
follows that for all # € IN we have a,,.1 > a, and b, 11 < b,. Assume
there exists i, j € IN such that b; < a;. We have three cases:

* i=j: then a; <b; for interval I; contradicting b; < 4;.

® | < j: then b; > b]- which yields the inequality chain b]- <b < aj,
contradicting aj < bj for interval I]-.

5 The Ratio Test and the Intermediate Value
Property feel like higher level proper-
ties that use infinite series and contin-
uos functions. We will see in the follow-
ing theorems how they relate to the other
properties.

®The set A is bounded from above so
B is non-empty. If A = {a} then A’ is
non-empty (for example (a —1) € A'). If
|A| > 1 then one of the elements in A
cannot be an upper bound of A which
also implies A’ is non-empty. By defi-
nition A’ UB = R. Assume there exists
a € A" and b € B such that a/ > V.
This would make 4’ an upper bound of
A, so a’ € B, a contradiction. It follows
that A’ < B.

7The Nested Intervals Property NIP is
not enough to achieve Dedekind Com-
pleteness DDC. For examples of fields
that are not Archimedean see ]. Propp.
Real Analysis in Reverse. ArXiv e-
prints, April 2012. URL https://arxiv.
org/abs/1204.4483. This theorem only
shows that if the Archimedean Property
AP also holds then we can get back from
NIP to DDC.


https://arxiv.org/abs/1204.4483
https://arxiv.org/abs/1204.4483

® i > j: then a; > a; which yields the inequality chain b; < a; < a;,
contradicting a; < b; for interval I;.

This means that for all i, j € IN we have aj < b;. In other words, the b,
are upper bounds for the set A = {a, : n € N}.

The set A is bound from above and non-empty, so according to
DDC there exists a least upper bound c. Since it is an upper bound
we already have Vi € IN : a, < c. Since c is the least upper bound
and all b, are upper bounds we also have ¢ < b,. It follows that
Vn €N :ce€ I, or c € Nyenly. This proves DDC = NIP.

Assume there exists x € R such that Vn € N : n < x. This means
that IN is bound from above. Let ¢ be the least upper bound for N. We
have

VneN:n+1eN=n+1<c=>n<c-1

¢ — 1 is an upper bound, c is the least upper bound soc <c—1, a
contradiction. This proves DDC = AP.
(«<=) Consider the non-empty set S C R bounded from above by by €
R.

We want to apply NIP, so we define nested intervals around the
upper bounds of S.

Proof Part 1.2.1. S is non-empty, so there exists ag € S. Define Iy =
[ag, bo]. The strategy now is to halve the interval and narrow it down
but remain with the right endpoint of each interval “on top of” S and
with the left endpoint in S.

Consider m = @ If [m,by] NS = @ then let a1 = ag and by = m.
If on the other hand Js € [m, by] N S then let a; = s and by = by. Define
I} = [a1, b1]. Repeat this process to define all I,,,n € IN.

The intervals I, have the following properties:

P1 :1,,1 C I,. This is visible from the definition of I, . Its endpoints
are either endpoints of I, or are points from inside I;,.

P2 :¥n € N : b, upper bound of S. We show this by induction on 7.
By choice by is an upper bound. Now assume that b, is an upper

bound. If b, ;1 = by, then it is an upper bound. If b, | = “”erb" then
because SN [by,41,b,] = @ and it also follows that b, 1 is an upper
bound 8.

P3 :Vn € IN: I, non-empty. This also follows by induction and by the
field axioms of R.

Pg :Vn € N :a, € S. This follows by induction and definition of left
endpoints.

P5s :Vn e N: |I,| <tz 9
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8 Assume b, 41 is not an upper bound
of S, so there exists s’ € S with s’ >
by41. But by induction b, is an up-
per bound, which means b, < § <
by, so s’ € [by41,bn], which contradicts
SN [bys1,bu] = 2.

9 We show this by induction on n. Base
case 1 = 0 holds by definition of Iy. As-
sume |I,| < b”;,f”. For I,,11 we observe
that its length is either half that of I, or

less than half when [/ b,] NS # @
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P1 and P3 satisfy the requirements of NIP, so we know & € NyenIy
exists.
We want to show that & = supS.

Proof Part 1.2.2. Assume « is not an upper bound of S. Then there
exists s € S with s > a. Let € = s —a > 0. Using the Archimedean
property we choose m € IN such that I, = [ay, by] with |L,| < €
10 Then a € I, but s ¢ I, and furthermore b, < s. This is a
contradiction to property P2, so « is an upper bound of S.

Now assume « is not the smallest upper bound of S. Then there
exists an upper bound  of S with B < a. Lete =« — > 0. Again we
choose m € N such that I,, = [ay, by] with |I,,| < e. That pushes ay,
between B and a: B < a,; < a. But according to property P4, a,, € S,
so B < a;; contradicts the fact that B is an upper bound of S. So « is the
smallest upper bound of S: & = supS. This proves NIP + AP = DDC

O

Theorem 1.3. DDC & MC

Proof. (=) Given is a monotone increasing sequence (a,) bound from
above. We define A = {a, : n € IN}, a set that is bound from above.
From DDOC it follows that least upper bound c of A exists. We want
to show that lim,, ;o a, = c. Foralle > 0we havec—€ < c¢,soc—¢€
cannot be an upper bound of A (c is the least upper bound). That
means that there exists ng € IN with a,, > ¢ — €. Since the sequence is
monotone increasing, we have

Vn>mng:ay>ay >c—€=|c—ay| <e

which proves a, — c.

(<) We first want to show MC = AP. Given MC assume that AP
doesn’t hold, so there exists x € R bigger than any natural number.
This means x is an upper bound for the sequence a, = n, a monotone
increasing sequence. From MC it then follows that a,, converges to a
limit c¢. The sequence b, = n + 1 is a, shifted to the left, so it is also
convergent with the same limit c. Taking the limit on the sequence
equation b, = a, + 1 we get c = ¢ + 1, a contradiction. So MC = AP.

To show that MC = DDC we are given non-empty set S with ag € S
bound from above by by € R. We define the same nested intervals as
in the Proof Part 1.2.1 of the proof of Theorem 1.2.

The same properties P; to Ps for I, as stated in Proof Part 1.2.1 hold.
The sequence (a,) is in S and monotone increasing and the sequence
(bn) is made of upper bounds of S and is monotone decreasing. (a;)
is bound from above and monotone so according to MC it converges
to a limit «.

*We use property P5.
“ag

by
ZY‘VL

<€, wegetm>log(

by—ag

€

From |I,| <

).



We want to show that &« = supS. We will use the exact same ar-
gument as in the Proof Part 1.2.2 of the proof of Theorem 1.2'*. This
proves MC = DDC O

Theorem 1.4. DDC < BW + AP*?

Proof. (=) We have already seen DDC = AP (Theorem 1.2).

Proof Part 1.4.1. To prove DDC = BW we are given a bounded se-
quence (sy):

Jag, by € R such that Vn € N :ap < s, < by

We define interval Iy = [ag, by] and divide it in half at ¢ = Lgbo.

At least one of the two intervals [ag, c], [c, bp] has an infinite number
of elements of the sequence s,*3. Define I; to be either [ag, c] or [c, by]
with an infinite number of elements of s5,,. We repeat this process re-
cursively, defining I, to be one of the halves of I,,,_; that has an infinite
number of elements of (s,). We get a sequence of nested intervals (I,;,)
of decreasing length |I,,| = ”02%170

We define f : N — IN recursively as

) =1
fn) =min{i>f(n—1):s; € I,_1}

The set {i > f(n—1) : s; € I,_1} is a non-empty, infinite subset
of IN, so its minimum exists and f is well defined and by definition
strictly monotone increasing. We define subsequence (s},) as s), =
S¢(n), Well defined because f is strictly monotone increasing.

Proof Part 1.4.2. From DDC we know that NIP holds so & € NyenIn
exists. We claim that s}, — a.

Because of AP we have for all € > 0 there exists ngp € IN such that
|I,| < €. We have a € I, and for all n > f~1(ng) : s, € I,,. This
means for all n > f~1(ng) : |s,, — a| < € and (s),) is a subsequence of
(sn) that converges to .

(<)

Proof Part 1.4.3. We are going to prove this direction by going through
NIP. Given nested non-empty intervals I, C I, we define sequence
(sn) by choosing an arbitrary element from each I, and setting it to
be s,. According to BW there exists a subsequence (s),) of (s,) that
converges s, — ¢. We claim that ¢ € NyeNIy.

Proof Part 1.4.4. Assume ¢ ¢ N,enI;. Then there must exist ng € N
such that ¢ ¢ I, = [an,, by,]. Either ¢ < ay, or ¢ > by,. Let’s consider
¢ < ay, (the other case is very similar). ¢ = 20— > 0. We have
s, — ¢, so there exists n; such that Vn > ny : |s;, —¢| < e. So for

/
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" The only difference in the two proofs
is that in this proof MC ensures the ex-
istence of @ and in the previous proof it
was NIP.

2Once again Bolzano-Weierstrass BW
is not enough to get back to Dedekind
Completeness DDC. We need the field
to be Archimedean AP.

13 Otherwise (s,) would not be an infi-
nite sequence.

4 By definition of I,_; there are an in-
finite number of elements s; in I,_1, so
there are an infinite number of indices i
in{i>f(n—1):s € I,_1}. Also any
non-empty subset of IN has a smallest el-
ement.
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Vn > max(ng,ny) : s, < c+€ < ay,. But (s)) is a subsequence of
(sn) so there must exist m € IN with f~1(m) > max(ng,n1). We have
Sm = Sp1(m) € L1(my- S0 8y € Ipa(yy C Ing and s, < an, which is a
contradiction. This means ¢ € NyenIy and BW = NIP which together
with AP gets us to DDC according to Theorem 1.2.

O
Theorem 1.5. DDC < CC + AP*5

Proof. (=) We have already seen DDC = AP (Theorem 1.2). To prove
DDC = CC we are given a Cauchy sequence (a,). We first show that
(an) is bounded. From the definition of a Cauchy sequence® we get
for € = 1 there exists N € N such that Vm > N : |a, —ay| < 1 =
lan| < 1+ |an|. Define M = max{|a1],|az],...,|lan-1|, |an| + 1} and
we have Vn € N : |a,| < M.

The Cauchy sequence (a,) is bounded so using DDC = BW from
Theorem 1.4 we know there is a subsequence of (a,,) that converges.
Let f : N — IN be the strictly monotone increasing function that de-
fines the converging subsequence a;, = a £(n) and let limy, e ay, = c.

For all € > 0 we have:

€
dny € N such that Vi > nq : |a, —ap, | < =

2
and then
3ny > f(ny) such that Vn > ny : |a), — c| < g
So
Vi >mny:lay —c| = |ay — ay, +ay, —c| < |ay — ay, |+ |ay, —c

, € €
= la” _af(n2)|+ Ianz _C| < E"’E =€
It means (a,) converges to ¢ and DDC = CC + AP.

(<) We will show that CC + AP = BW. We are given a bounded
sequence (s,) and we use the same subsequence construction as in
the Proof Part 1.4.1 of Theorem 1.4. We claim that the so constructed
subsequence (s},) is a Cauchy sequence. Indeed for all € > 0 there
exists N € IN such that |Iy| < € (again we need AP here). We then
have:

Vm,n > N :s),sh, €Iy = s, —s,| <|In| <e

So (s},) is a Cauchy sequence and by CC it converges which means
that (s,) has a convergent subsequence.

5 As seen before with NIP and BW
the Cauchy Criterion CC is not enough
to get back to Dedekind Complete-
ness DDC. We need the field to be
Archimedean AP.

16 A sequence (a,) is a Cauchy sequence
if Ve > 0 : IN € N such that Vm,n >
N:|ay —ay| <e.

[Finish up. }
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