
Cat vs dog

Bipartite graphs, network flows, matchings and vertex covers are
the topics of the problem 1 in this note. 1 Spotify. Cat vs dog. 2012. URL https:

//labs.spotify.com/puzzles/

Problem

The latest reality show has hit the TV: “Cat vs. Dog”. In this show, a bunch of cats and dogs compete
for the very prestigious Best Pet Ever title. In each episode, the cats and dogs get to show themselves
off, after which the viewers vote on which pets should stay and which should be forced to leave the
show.

Each viewer gets to cast a vote on two things: one pet which should be kept on the show, and one pet
which should be thrown out. Also, based on the universal fact that everyone is either a cat lover (i.e.
a dog hater) or a dog lover (i.e. a cat hater), it has been decided that each vote must name exactly
one cat and exactly one dog.

Ingenious as they are, the producers have decided to use an advancement procedure which guaran-
tees that as many viewers as possible will continue watching the show: the pets that get to stay will
be chosen so as to maximize the number of viewers who get both their opinions satisfied. Calculate
this maximum number of satisfied viewers.

At first glance this looks similar to a SAT problem 2, something like 2 Boolean satisfiability problem
http://en.wikipedia.org/wiki/

Boolean_satisfiability_problem
(c1 ∧ ¬d3), (c3 ∧ ¬d1), (d2 ∧ ¬c2), . . . where ci are the cats and dj are
the dogs. The goal would be to pick the biggest subset of boolean
expressions (votes) that are satisfied.

But SAT is about one boolean expression and about assigning val-
ues to boolean variables to satisfy it. Seems like SAT is fundamentally
different and not a good approach in solving this problem. What if
we want to visualize the boolean expressions and see the relationships
between them, i.e. which ones are in conflict. Conflict between two
boolean expressions means one expression has ci and the other ex-
pression has ¬ci or one has dj and the other ¬dj. A good way to do
that is with a graph as in Figure 1.1. The nodes in the graph are the

https://labs.spotify.com/puzzles/
https://labs.spotify.com/puzzles/
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

2 uwe hoffmann

c1 ∧ ¬d3

c2 ∧ ¬d2

c4 ∧ ¬d1

c3 ∧ ¬d1

¬c2 ∧ d1

¬c4 ∧ d3

¬c1 ∧ d2

Cat lovers

Dog lovers

Figure 1.1: Votes form a bipartite graph.
A graph is bipartite if the vertex set is
partitioned into two subsets (blue and
green in this case) such that no vertices
in a subset are adjacent.

boolean expressions and edges connect boolean expressions that are in
conflict.

It becomes apparent that the graph is bipartite with cat lovers on
one side and dog lovers on the other. That is good because a lot of
graph algorithms are much simpler and work faster if the graphs are
bipartite. But what algorithm should we use? We need to find the
biggest subset of nodes in the graph that are not in conflict.

Sometimes it’s easier to compute the complement of what we want:
the smallest subset of nodes that are involved in conflicts. Removing
these nodes and the edges they touch should leave us with a graph
with only nodes and no edges, i.e. only votes without conflicts. Be-
cause we strive to remove the smallest subset of conflicting nodes we
are left with the biggest subset of votes without conflicts.

The subset of nodes that are involved in conflicts is a vertex cover 3 3 A vertex cover is a subset of nodes such
that each edge in a graph is incident to
at least one vertex in the subset.

for our bipartite graph.
We need to compute a minimum vertex cover. This will be a good

excuse to learn about network flows in graphs, maximum flows and
minimum cuts. This delightful detour will eventually bring us to max-
imum matchings4 and then finally to minimum vertex covers. 4 A matching is a subset of edges such

that no two edges in the subset share a
vertex.

We begin with network flows in graphs. We work with a directed
graph G = (V, E) that has two special vertices s and t called source
and target. No edge goes into source and no edge comes out of target.
We also have a function c : E → R≥0 that assigns a non-negative
capacity to each edge. The graph G together with source s and target

math notes - cat vs dog 3

t and capacity function c form a network (G = (V, E), s ∈ V, t ∈ V, c). u v
10/20

Figure 1.2: In figures we annotate an
edge with flow and capacity as shown
here. In this case f (u → v) = 10 and
c(u → v) = 20. If only one number is
annotating the edge then it’s the capac-
ity.

Definition 1.1. A function f : E → R≥0 is a flow through network
(G, s, t, c) if f satisfies the following constraints:

• capacity constraint: flow along an edge cannot exceed the capacity of
the edge

∀e ∈ E : f (e) ≤ c(e)

• conservation constraint: incoming flow into a vertex (except for source
and target) equals outgoing flow from the vertex

∀v ∈ V \ {s, t} : ∑
u

f (u → v) = ∑
w

f (v → w)
s

v

u

t

20/20

0/10

20/100

0/10

20/20

Figure 1.3: Example network flow. Here
| f | = 20 and the whole flow is pumped
along the path s → u → v → t. In this
exampe f saturates s → u and v → t and
avoids s → v and u → t.

For notational simplicity we assume
functions f and c are defined on V × V
and f (u → v) = c(u → v) = 0 if u → v
is not an edge in G = (V, E).

Source s generates flow and target t consumes flow. The value of
flow f , denoted | f |, is defined as

| f | = ∑
w

f (s → w) = ∑
v

f (v → t)

Given a network (G, s, t, c) what is the maximum flow value that can
be pumped through it? Figure 1.3 shows a flow of value 20 through
an example network. It saturates the flow along one particular path
and avoids the other edges. Is 20 the maximum flow value that can
be achieved for this example network? Figure 1.4 shows the same
network but now with a flow of value 30. Can we do better than 30?
The answer is no, because that would exceed the outgoing capacity of
source s or the incoming capacity of t. s

v

u

t

20/20

10/10

10/100

10/10

20/20

Figure 1.4: Same example network with
a flow of value | f | = 30.

Our goal is to device an algorithm that constructs a flow with max-
imum value through a given network. To gauge the progress of our
algorithm we need an upper bound for the maximum flow value. As
said before the maximum value clearly cannot exceed the outgoing ca-
pacity of source s or the incoming capacity of t. But more generally
if we sever the ties between source and target along some subset of
edges such that there are no more paths from source to target then
the maximum flow value cannot exceed the capacity of the cut. This
seems like a useful concept to formalize.

Definition 1.2. In a network (G, s, t, c) a cut is a partition of the vertex
set V into two subsets S and T, such that V = S ∪ T, S ∩ T = ∅ and
s ∈ S, t ∈ T. The capacity of the cut (S, T), denoted ∥S, T∥, is defined
as

∥S, T∥ = ∑
v∈S

∑
w∈T

c(v → w)

Theorem 1.3. With network (G, s, t, c), for any flow f and any cut (S, T)
we have

| f | ≤ ∥S, T∥

4 uwe hoffmann

Figure 1.5: Alexander Schrijver. On
the history of the transportation and
maximum flow problems. 2002. URL
http://homepages.cwi.nl/~lex/files/

histtrpclean.pdf:
Network flows and minimum cuts
played a role in the Cold War. The
figure is a schematic diagram of the
railway network of the Western Soviet
Union and Eastern European countries,
with a maximum flow of value 163,000

tons from Russia to Eastern Europe, and
a cut of capacity 163,000 tons indicated
as “The bottleneck”.

Furthermore equality holds if and only if f saturates every edge from S to T
and avoids every edge from T to S.

Proof.

| f | = ∑
w

f (s → w) (by definition)

= ∑
w

f (s → w)− ∑
v

f (v → s) (second sum terms are all zero)

= ∑
u∈S

(∑
w

f (u → w)− ∑
v

f (v → u)) (flow conservation constraint)

= ∑
u∈S

(∑
w∈T

f (u → w)− ∑
v∈T

f (v → u)) (edges in S cancel each other out)

≤ ∑
u∈S

∑
w∈T

f (u → w) (because f (v → u) ≥ 0)

≤ ∑
u∈S

∑
w∈T

c(u → w) (flow capacity constraint)

= ∥S, T∥ (by definition)

s

v

u

t

20/20

0/10

20/100

0/10

20/20

10

20

10

Figure 1.6: Dashed edges show how the
greedy s− t path flow can be augmented
and reversed in order to increase overall
flow.

Theorem 1.3 tells us that if we keep increasing a flow and/or de-
creasing a cut we should eventually meet at a maximum flow that
equals a minimum cut. But given a network how do we start? A first
valid flow is ∀e ∈ E : f (e) = 0. We could then try a greedy strategy.
Starting with source s find the path to t with the biggest capacity5 and 5 The capacity of a path is the minimum

over the capacities of the edges forming
the path.

pump as much flow as we can through it as illustrated in Figure 1.3.
Unfortunately we are stuck at that point. We cannot pump more flow
out of s on s → v because that would violate flow conservation at v
(we are at the maximum outgoing flow at v). The dashed edges in Fig-
ure 1.6 show some of our options. On edges where the current flow
leaves residual capacity we can pump more and on edges where there
is existing flow we can reverse it. Again, this concept seems worth
formalizing.

http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf

math notes - cat vs dog 5

Definition 1.4. A flow f in a network (G, s, t, c) induces a residual
network (G f , s, t, c f) with residual graph G f and residual capacity c f

in the following way:

• all vertices from G are vertices in G f , also source s and target t are
the same in G and G f

• if f (u → v) > 0 then G f has an edge (v → u) with capacity

c f (v → u) = f (u → v)

• if f (u → v) < c(u → v) then G f has an edge (u → v) with capacity

c f (u → v) = c(u → v)− f (u → v)

Figure 1.7 shows the residual network of our example network and
flow. We observe that there is a simple path6 s → v → u → t with 6 A simple path is a path where every

vertex on the path is visited only once.capacity 10 from source s to target t in the residual graph. This path
shows that there still is unused capacity for flow to be pushed from s
to t. A simple path from s to t in G f is called an augmenting path.

(a)

(b)

s

v

u

t

s

v

u

t

20/20

0/10

20/100

0/10

20/20

20

10

80 20

10

20

Figure 1.7:
(a) Example network with flow from Fig-
ure 1.3.
(b) Residual network (in blue) with
edges annotated with their residual ca-
pacity.

(a)

(b)

s

v

u

t

s

v

u

t

20/20

0/10

20/100

0/10

20/20

20/20

10/10

10/100

10/10

20/20

Figure 1.8:
(a) Example network with flow from Fig-
ure 1.3.
(b) Augmented flow (changed values in
red) from augmenting path s → v →
u → t.

Theorem 1.5. Given is a flow f in network (G, s, t, c). If there is an aug-
menting path in G f with capacity F then the function f ′ : V × V → R≥0

defined as:

f ′(u → v) =


f (u → v) + F, if u → v is on the augmenting path

f (u → v)− F, if v → u is on the augmenting path

f (u → v), otherwise

is a valid flow in network (G, s, t, c) with | f ′| = | f |+ F.

Proof. We need to check the capacity constraint and the conservation
constraint.

Let’s start with the capacity constraint. The definition of f ′ has three
cases, so we check all three:

• Edge u → v is on the augmenting path:

f ′(u → v) = f (u → v) + F (by definition)

≤ f (u → v) + c f (u → v) (by definition of F)

= f (u → v) + c(u → v)− f (u → v) (by definition of c f)

= c(u → v)

• Edge v → u is on the augmenting path:

6 uwe hoffmann

f ′(u → v) = f (u → v)− F (by definition)

≥ f (u → v)− c f (u → v) (by definition of F)

= f (u → v)− f (u → v) (by definition of c f)

= 0

• Otherwise: In this case the flow of the edge hasn’t changed so ca-
pacity constraint is satisfied.

Next is the conservation constraint. For vertices not on the aug-
menting path flow in and out of them hasn’t changed, so conservation
constraint is satisfied there. For a vertex v on the augmenting path we
have four cases (since the augmenting path is simple and v ̸= s, v ̸= t):

• u → v on augmenting path and v → w on augmenting path: in
this case one incoming edge into v changed by F and one outgoing
changed by F, so conservation constraint holds for v

• u → v on augmenting path and w → v on augmenting path: in this
case two incoming edges into v changed, one by F and the other by
−F, so conservation constraint holds for v

• v → u on augmenting path and w → v on augmenting path: in this
case one incoming edge into v changed by −F and one outgoing
changed by −F, so conservation constraint holds for v

• v → u on augmenting path and v → w on augmenting path: in this
case two outgoing edges from v changed, one by −F and the other
by F, so conservation constraint holds for v (a)

(b)

s

v

u

t

s

v

u

t

20/20

10/10

10/100

10/10

20/20

20

10

90 10

10

20

Figure 1.9:
(a) Example network with flow from Fig-
ure 1.4.
(b) Residual network (in blue) with
edges annotated with their residual ca-
pacity.

What happens when there is no augmenting path in G f ? As the
Figure 1.9 hints we then have a maximum flow (in our example | f | =
30). The next theorem proves it.

Theorem 1.6. Given is a flow f in network (G, s, t, c). If there is no aug-
menting path in G f then f is a flow with maximum value.

Proof. We define two subsets of V. The set S holds all the vertices of
V that are reachable from s in G f . Since there is no augmenting path
in G f we have t /∈ S. We also define T = V \ S. Clearly (S, T) is a
cut of our network. Also there is no G f edge u → v with u ∈ S and
v ∈ T because otherwise v would be reachable from somewhere in S
but v /∈ S, contradicting the definition of S. This means (by definition
of G f) that f saturates every edge from S to T and avoids every edge

math notes - cat vs dog 7

from T to S. According to Theorem 1.3 we then have | f | = ∥S, T∥
which means we have a maximum flow and minimum cut.

Delbert Ray Fulkerson was an American
mathematician who co-developed the
Ford–Fulkerson algorithm. https://en.
wikipedia.org/wiki/D._R._Fulkerson

We can now piece together the following algorithm known as the
Ford-Fulkerson algorithm:

Listing 1.1: Ford-Fulkerson algorithm

f = zero flow ;
Gf = r e s i d u a l graph of f in G;

while (e x i s t s augmenting path in Gf) :
pa = choose any augmenting path ;
f = augment f with pa ;
Gf = r e s i d u a l graph of f in G;

re turn f

Theorem 1.7. If the network has capacities in N≥0 then the Ford-Fulkerson
algorithm terminates and returns the maximum flow in the network.

Proof. We prove by induction that f : V × V → N≥0: The base case
is the zero flow which is in N≥0. Assume the current flow values
are in N≥0. The augmenting operation adds or subtracts a positive
integer value from the current flow values and conforms to capacity
constraints, so it keeps the augmented flow values in N≥0 which com-
pletes the induction.

The augmented flow f ′ modifies one outgoing edge from s by F > 0,
so by the definition of the value of a flow we have | f ′| = | f |+ F. This
means that augmenting strictly increases the value of the flow. We
also know that flow values have an upper bound (by Theorem 1.3 any
cut capacity is an upper bound). This means the algorithm has to
eventually reach the maximum flow and terminate.

https://en.wikipedia.org/wiki/D._R._Fulkerson
https://en.wikipedia.org/wiki/D._R._Fulkerson

8 uwe hoffmann

This concludes our detour into network flows7. 7 We have just scratched the surface
of the topic on network flows and
algorithms computing maximum flows
(an area of active research). For example
by making smart choices when choosing
the augmenting path we can improve
the runtime of the algorithm (also we
haven’t analyzed the runtime). What
happens when the capacities are not in
N≥0. For details on all this and more
see:
Jon Kleinberg and Eva Tardos. Algorithm
Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA,
2005. ISBN 0321295358

Jeff Erickson. Algorithms, Etc. 2015.
URL http://jeffe.cs.illinois.edu/

teaching/algorithms/.

We should bring it back to our problem and the associated bipartite
graph of conflicting votes. We want a minimal vertex cover and we
would like to use the just derived Ford-Fulkerson algorithm to com-
pute it. So we first have to transform our undirected bipartite graph
into a network.

We have an undirected bipartite graph G(V = X ∪ Y, E) with X ∩
Y = ∅ and E ⊆ X × Y (X could be the votes of cat lovers and Y the
votes of dog lovers in our problem or vice versa). We add a source s
and a target t and construct a network (G′, s, t, c) in the following way:

• vertex set of G′ is X ∪ Y ∪ {s, t}

• ∀u ∈ X add a directed edge s → u into edge set of G′

• ∀v ∈ Y add a directed edge v → t into edge set of G′

• ∀{u, v} undirected edge in G with u ∈ X and v ∈ Y add a directed
edge u → v into edge set of G′

• unit capacity8: ∀(u → v) ∈ edge set of G′ : c(u → v) = 1 8 Unit capacity has the advantage that a
flow either saturates the edge or avoids
it.With a network (G′, s, t, c) constructed from a bipartite graph G

as described above (an example is shown in Figure 1.10) we have an
equivalence between a matching in the bipartite graph and a flow in
the network. The next theorem states this.

(a)

(b)

s t

x1

x2

x3

x4

y1

y2

y3

1

1

1

1

1

1

1

1

1

1

1

1

1

x1

x2

x3

x4

y1

y2

y3

Figure 1.10:
(a) Bipartite graph
(b) Network constructed from it.

Theorem 1.8. A matching M in G induces a flow f in G′ such that | f | =
|M|. Conversely a flow in G′ induces a matching M in G such that |M| =
| f |.

Proof. (⇒) We have a matching M in G, i.e. a subset of edges that
don’t share a vertex. From the construction of G′ it follows that each
of the edges in M can be extended to paths from s to t which will only
meet in s and t. We define a function f that gives unit values to the
edges along these paths and zero value to all other edges. We claim
that f is a valid flow. It only assigns zero or unit values so it does
satisfy the capacity constraint in G′. The paths don’t intersect except
in s and t (because M is a matching), so for any vertex along the path
there is exactly one incoming edge with unit value and one outgoing
edge with unit value. The rest of the edges have value zero so don’t
play a role in conservation. This then means that the conservation
constraint is satisfied also and f is a flow. Each edge in M corresponds
to one of the paths, so there are |M| edges outgoing from s that have
unit value. Hence | f | = |M|.
(⇐) We have a flow f in G′. The flow either saturates or avoids an
edge. We define the subset M of edges that are saturated by f and are

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/

math notes - cat vs dog 9

between X and Y. We claim that M is a matching in G. Suppose it is
not a matching. Then there exists a vertex that is shared by two edges
in M. If this vertex is in X then it means it has two outgoing edges of
unit value but only one incoming edge of unit value (from s). If this
vertex is in Y then it means it has two incoming edges of unit value
and only one outgoing edge of unit value (to t). In either case this is
a contradiction to the conservation constraint of f . So M has to be a
matching. The size of M is by its definition equal to the number of
saturated edges from X to Y. But this number has to be equal to the
number of edges of unit value going out of s (conservation constraint).
Hence |M| = | f |.

Theorem 1.8 let’s us use the Ford-Fulkerson algorithm to compute
a maximum matching in our bipartite graph G. Once we have a max-
imum matching we get the size of a minimum vertex cover with the
following theorem, known as König’s theorem9: 9 For a short and elegant proof see:

Romeo Rizzi. A short proof of König’s
matching theorem. Journal of Graph The-
ory, 33(3):138–139, 2000. URL https://

math.dartmouth.edu/archive/m38s12/

public_html/sources/Rizzi2000.pdf

Theorem 1.9. In a bipartite graph G the size of a minimum vertex cover C
equals the size of a maximum matching M.

Proof. C is a vertex cover, so it covers all edges, which means it cer-
tainly covers a subset M of all edges. But M is a matching, so no two
edges share a vertex. It follows that |C| ≥ |M|.

From the maximum matching M we get the associated maximum
flow f as described in Theorem 1.8. The residual graph G′

f of the
associated network cannot have any augmenting paths.

We consider the minimum cut (S, T) associated with the maximum
flow f . We define the following sets:

• XS = X ∩ S, XT = X ∩ T

• YS = Y ∩ S, YT = Y ∩ T

• H = {(u, v) edge in G : u ∈ S, v ∈ T}

• B = {v ∈ YT : ∃u ∈ XS with (u, v) edge in G}

• D = XT ∪ YS ∪ B

D is a vertex cover: XT ⊆ D and YS ⊆ D, so D covers all edges that
have endpoints in XT or YS. The set B provides cover for H.

A vertex u ∈ XT is not reachable from s in G′
f . It means that f

saturates s → u in G′, so the saturated edge s → u crosses the (S, T)
cut and counts towards ∥S, T∥.

A vertex v ∈ YS is reachable from s in G′
f . It means that f saturates

v → t in G′ (otherwise some vertex from T would be reachable from
v and also from s in G′

f which is a contradiction). The saturated edge
v → t crosses the (S, T) cut and counts towards ∥S, T∥.

https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf

10 uwe hoffmann

S

T

s t

s t

S

T

(a)

(b)

(c)

Figure 1.11:
(a) A bipartite graph G(X ∪ Y, E). X are
green vertices, Y are red vertices.
(b) Maximum flow f (thicker arrows)
and minimum cut (S, T) in the corre-
sponding network G′. Thicker arrows
between green and red vertices form the
maximum matching.
(c) Same cut displayed with the corre-
sponding residual graph G′

f .

f is a maximum flow so any edge from XS to YT is saturated and
counts towards ∥S, T∥.

∥S, T∥ = |XT |+ |YS|+ |H|

Figure 1.11 shows this. In (b) there are three saturated (thick) arrows
crossing the cut. The first two (counting from left to right) are due to
XT and the last one due to YS. In this example H is the empty set.

We have

|M| = | f | = ∥S, T∥ = |XT |+ |YS|+ |H| ≥ |XT |+ |YS|+ |B| ≥ |D|

D is a vertex cover and C is a minimum vertex cover, so |D| ≥ |C|. It
follows that |C| ≥ |M| ≥ |D| ≥ |C| which means |C| = |M|.

math notes - cat vs dog 11

This solves the problem in this note. The number of satisfied view-
ers is |V| − |M|, where V is the set of vertices in the bipartite graph G
of votes with their conflicts as edges and M is a maximum matching
in G computed with the Ford-Fulkerson algorithm taking advantage
of the min-max duality shown in Figure 1.12.

flow cut

matching vertex
cover





max flow = min cut

max matching = min cover

Figure 1.12: Min-max duality in bipartite
graphs and corresponding networks.

Bibliography

Jeff Erickson. Algorithms, Etc. 2015. URL http://jeffe.cs.illinois.

edu/teaching/algorithms/.

Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2005. ISBN
0321295358.

Romeo Rizzi. A short proof of König’s matching theorem. Journal of
Graph Theory, 33(3):138–139, 2000. URL https://math.dartmouth.

edu/archive/m38s12/public_html/sources/Rizzi2000.pdf.

Alexander Schrijver. On the history of the transportation and maxi-
mum flow problems. 2002. URL http://homepages.cwi.nl/~lex/

files/histtrpclean.pdf.

Spotify. Cat vs dog. 2012. URL https://labs.spotify.com/puzzles/.

http://jeffe.cs.illinois.edu/teaching/algorithms/
http://jeffe.cs.illinois.edu/teaching/algorithms/
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
https://math.dartmouth.edu/archive/m38s12/public_html/sources/Rizzi2000.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
https://labs.spotify.com/puzzles/

	Bibliography

