
Bridge Crossings

Problem

Four people begin on the same side of a bridge. You must send them across to the other side in the
fastest time possible. It is night. There is one flashlight. A maximum of two people can cross at a
time. Any party who crosses, either one or two people, must have the flashlight to see. The flashlight
must be walked back and forth, it cannot be thrown, etc. Each person walks at a different speed. A
pair must walk together at the rate of the slower person’s pace, based on this information: Person 1
takes t1 = 1 minutes to cross, and the other persons take t2 = 2 minutes, t3 = 5 minutes, and t4 = 10
minutes to cross, respectively.

Günter Rote1 gives a very elegant solution to this puzzle. 1 Günter Rote. Crossing the Bridge at
Night. World Wide Web, http://page.
mi.fu-berlin.de/~rote/Papers/pdf/

Crossing+the+bridge+at+night.pdf,
2002

How many ways are there to let n people cross the bridge under the
rules of the original puzzle ?

There are (n
2) ways to send the first pair over to the other side, there

are 2 ways to send the flashlight back with somebody from that side.
Now there are (n−1

2 ) ways to send the next pair over to the other side
from the remaining n− 1 people on this side and then there are 3 ways
to send the flashlight back with somebody from that side etc.

Using the basic product counting principle from combinatorics we
get the number of ways P to let n people cross the bridge
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Taking the product from (1.1) and using the definition of a binomial
coefficient we get:
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With:
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and
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(1.3)

we get:
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The product of these Pk can now be simplified to:
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Using (1.5) we get the solution

P =
n!((n − 1)!)2

2n−1 (1.6)

For four people this comes to an astonishing 108 ways to cross the
bridge under the rules of the puzzle.

Generating the ways

This section shows a small Haskell program that generates all the pos-
sible ways to cross the bridge. It has a helper function pairs that gener-
ates a list of all possible pairs from a set. It then defines two mutually
recursive functions bridgecrossleft and bridgecrossright for crossing the
bridge from the left side as pairs and for a flashlight carrier coming
back from the right. The functions pass along the states on the left
bank lbs and the right bank rbs. They generate all possible crossings
in their respective direction given the current state. For pairs crossing
from the left tuples have the respective pair and for people coming
back from the right tuples have the same person in both positions of
the tuple. The functions collect the resulting combinations in a list of
lists of tuples rs (Fig. 1.1). bridgecross is the main function taking a list
and calling bridgecrossleft because we start on the left with all possible
ways of crossing of the first pair.

bridgecrossleft
lbs rbs rs

bridgecrossright
lbs rbs rs

lbs
rbs

Figure 1.1: Two mutually recursive func-
tions bridgecrossleft and bridgecrossright.

Calling bridgecross [1, 2, 3] we get this result:
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[
[ ( 1 , 2 ) , ( 1 , 1 ) , ( 1 , 3 ) ] ,
[ ( 1 , 2 ) , ( 2 , 2 ) , ( 2 , 3 ) ] ,
[ ( 1 , 3 ) , ( 1 , 1 ) , ( 1 , 2 ) ] ,
[ ( 1 , 3 ) , ( 3 , 3 ) , ( 3 , 2 ) ] ,
[ ( 2 , 3 ) , ( 2 , 2 ) , ( 2 , 1 ) ] ,
[ ( 2 , 3 ) , ( 3 , 3 ) , ( 3 , 1 ) ]

]



4 uwe hoffmann

Listing 1.1: Haskell code

p a i r s : : [ a ] −> [ ( a , a ) ]

p a i r s xs = l e t
rmap : : ( a −> [ a ] −> [ b ] ) −> [ a ] −> [ b ]

rmap f ( x : xs ) = ( f x xs ) ++ ( rmap f xs )

rmap f [ ] = [ ]

mpairs : : ( a −> [ a ] −> [ ( a , a ) ] )

mpairs x xs = map (\y −> ( x , y ) ) xs

in rmap mpairs xs

b r i d g e c r o s s l e f t : : [ Int ] −> [ Int ] −> [ ( Int , Int ) ]
−> [ [ ( Int , Int ) ] ]

b r i d g e c r o s s l e f t l b s rbs r s
= i f ( length l b s ) >= 2 then

l e t
ps = p a i r s l b s
f = ( \ ( x , y ) −>

( b r i d g e c r o s s r i g h t
( f i l t e r (\ z −> ( z /= x )

&& ( z /= y ) ) l b s )
( x : y : rbs ) ( r s ++ [ ( x , y ) ] ) ) )

in f o l d l (++) [ ] (map f ps )
e lse [ r s ]

b r i d g e c r o s s r i g h t : : [ Int ] −> [ Int ] −> [ ( Int , Int ) ]
−> [ [ ( Int , Int ) ] ]

b r i d g e c r o s s r i g h t l b s rbs r s
= i f ( length l b s ) > 0 then

l e t
f = (\ x −>

( b r i d g e c r o s s l e f t ( x : l b s )
( f i l t e r (\ z −> ( z /= x ) ) rbs )

( r s ++ [ ( x , x ) ] ) ) )
in f o l d l (++) [ ] (map f rbs )

e lse [ r s ]

br idgecross : : [ Int ] −> [ [ ( Int , Int ) ] ]

br idgecross xs = b r i d g e c r o s s l e f t xs [ ] [ ]
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