Schröder-Bernstein Theorem

Bijections from one-to-one functions are the topic ${ }^{1}$ in this note. The problem statement is known as the Schröder-Bernstein Theorem.

Problem

Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be one-to-one functions. Then there exists a bijection $h: X \rightarrow Y$.

The given functions are one-to-one, so for subsets $f(X)$ and $g(Y)$ they are already bijections. This leads to the idea of partitioning X and Y such that we can compose a bijection h piece-wise from f and g^{-1} using the partitions. In particular given a subset $A \subseteq X$, we consider the sets $A, X \backslash A, f(A), Y \backslash f(A)$ and $g(Y \backslash f(A))$. We want subsets $A \subseteq X$, such that $A \cap g(Y \backslash f(A))=\varnothing$, as shown in figure 1.2. Let's define this as property P :

$$
\forall A \subseteq X: P(A) \Leftrightarrow A \cap g(Y \backslash f(A))=\varnothing
$$

If we have a subset $A \subseteq X$ that satisfies $P(A)$, then we can define the bijection h :

$$
h(x)= \begin{cases}f(x) & : x \in A \\ g^{-1}(x) & : x \in g(Y \backslash f(A))\end{cases}
$$

The domain of h is $A \cup g(Y \backslash f(A))$, which is not necessarily equal to X, so we are not done yet. Our goal therefore is to find a subset $A \subseteq X$ that satisfies $P(A)$ and for which $A \cup g(Y \backslash f(A))=X$.

Let

$$
\Lambda=\{A \subseteq X: P(A)\}
$$

be the set of all subsets of X that satisfy property P and let \bar{A} be the union of all such subsets

$$
\bar{A}=\bigcup_{A \in \Lambda} A
$$

${ }^{1}$ Exercise 1.5.11 on page 32 from Stephen Abbott. Understanding Analysis. Springer, 2 edition, 2015. ISBN 978-1-4939-2711-1.

Figure 1.1: A violates $P(A)$

Figure 1.2: A satisfies $P(A)$

Lemma 1.1. \bar{A} is the biggest subset of X that satisfies P.
Proof. First we show that \bar{A} satisfies P. Assume

$$
\exists y \in Y \backslash f(\bar{A}) \text { with } g(y) \in \bar{A}
$$

Then there exists a set $A \in \Lambda$ with $g(y) \in A^{2} . A \subseteq \bar{A}$, so $f(A) \subseteq f(\bar{A})$. Therefore $Y \backslash f(\bar{A}) \subseteq Y \backslash f(A)$, so $y \in Y \backslash f(A)$. But this contradicts A satisfying property P, so no such y exists. It follows that \bar{A} satisfies P too.

Assume there is a set A^{\prime} that satisfies P and that is bigger than \bar{A}, so $\bar{A} \subseteq A^{\prime}$. But $A^{\prime} \in \Lambda$ and $\bar{A}=\bigcup_{A \in \Lambda}$, so $A^{\prime} \subseteq \bar{A}$. That means $A^{\prime}=\bar{A}$.

With \bar{A} we can define the partitions $X=\bar{A} \oplus(X \backslash \bar{A})$ and $Y=$ $f(\bar{A}) \oplus(Y \backslash f(\bar{A}))$.

Lemma 1.2 .

$$
g(Y \backslash f(\bar{A}))=X \backslash \bar{A}
$$

Proof. Because \bar{A} satisfies P, we already know that

$$
g(Y \backslash f(\bar{A})) \subseteq X \backslash \bar{A}
$$

Now assume

$$
\exists x \in X \backslash \bar{A} \text { such that } \forall y \in Y \backslash f(\bar{A}): g(y) \neq x
$$

But then $\bar{A} \cup\{x\}$ satisfies $P 3$ and is bigger than \bar{A}. This contradicts lemma 1.1. So no such x exists and the lemma is proven.

We can now define the bjection $h: X \rightarrow Y$ with

$$
h(x)= \begin{cases}f(x) & : x \in \bar{A} \\ g^{-1}(x) & : x \in X \backslash \bar{A}\end{cases}
$$

which solves the problem in this section. ${ }^{4}$

[^0]${ }^{3}$ We have
$$
Y \backslash f(\bar{A} \cup\{x\}) \subseteq Y \backslash f(\bar{A})
$$
so
$$
\forall y \in Y \backslash f(\bar{A} \cup\{x\}): g(y) \notin \bar{A} \cup\{x\}
$$

[^1]
Bibliography

Stephen Abbott. Understanding Analysis. Springer, 2 edition, 2015. ISBN 978-1-4939-2711-1.

[^0]: ${ }^{2}$ Because $\bar{A}=\bigcup_{A \in \Lambda}$.

[^1]: ${ }^{4}$ The solution uses a nifty proof strategy: maximize a mathematical structure so that its "complement" has no choice but to satisfy a certain property, ie not satisfying the property would contradict the maximality.

