
Bernoulli Inequality

In this note we explore some variants of the Bernoulli Inequality by
following this exercise1. 1 Exercise 1.18 on page 10 in N.L.

Carothers. Real Analysis. Cam-
bridge University Press, 2000. ISBN
9780521497565. URL https://books.

google.com/books?id=4VFDVy1NFiACProblem

Given a > 0 show that (1 + a)r > 1 + ar for any rational expo-
nent r > 1.

We need to declare what properties of the real numbers we are al-
lowed to use. This exercise is in the beginning of Real Analysis, so we
are not allowed to deploy any ’heavy machinery’ like derivatives, con-
vex functions etc. We assume the usual properties of R as an ordered
field, but we have not shown yet that m-th roots exist for any positive
real2. 2 We are actually going to sketch that out

in this note because we need it. We have
not defined exponentiation by a rational
exponent yet.

First we prove the inequality for natural numbers n > 1.

Theorem 1.1. Given a > −1 and a ̸= 0, the inequality (1 + a)n > 1 + na
holds for any integer n > 1.

Proof. We are going to use induction to prove this inequality. For n = 2
we have

1 + 2a + a2 > 1 + 2a

which covers the base case. Assume that the inequality holds for n.
For the induction step we have:

(1 + a)n+1 = (1 + a)(1 + a)n > (1 + a)(1 + na)

= 1 + na + a + na2

= 1 + (n + 1)a + na2 > 1 + (n + 1)a

The next theorem might look like it is coming out of nowhere but
it is a step in the exercise and there is a connection with the Bernoulli
inequality.

https://books.google.com/books?id=4VFDVy1NFiAC
https://books.google.com/books?id=4VFDVy1NFiAC
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Theorem 1.2. The sequence en = (1 + x
n )

n is increasing for any x > 0.

Proof. We are actually going to use theorem 1.1 to prove this theorem.
There are two straightforward ways to prove that a sequence en in-
creases. One way is to show that en+1 − en > 0 and the other way is
to show that en+1

en
> 1. The second way requires en > 0 which is the

case here. We are choosing the second way because ratios more closely
connect with multiplication and exponents and we hope to find oppor-
tunities to simplify the expressions.

en+1

en
=

(1 + x
n+1 )

n+1

(1 + x
n )

n

= (1 +
x
n
)(
(1 + x

n+1 )

(1 + x
n )

)n+1

= (1 +
x
n
)(

n + 1 + x
n + x

n
n + 1

)n+1

= (1 +
x
n
)(

(n + 1)n + nx
(n + x)(n + 1)

)n+1

= (1 +
x
n
)(
(n + 1)(n + x)− x
(n + x)(n + 1)

)n+1

= (1 +
x
n
)(1 − x

(n + x)(n + 1)
)n+1

The last part of this long chain of equalities has a form that sug-
gests theorem 1.1. We have to make sure that −x

(x+n)(n+1) satisfies the
conditions of that theorem.

−x
(x + n)(n + 1)

> −1 ⇔ x < (x + n)(n + 1)

⇔ x < nx + x + n2 + n

⇔ 0 < nx + n2 + n

which x > 0 satisfies, so we can apply theorem 1.1. It follows that

en+1

en
> (1 +

x
n
)(1 − (n + 1)

x
(n + x)(n + 1)

)

= (1 +
x
n
)(1 − x

n + x
)

= (1 +
x
n
)(

n
n + x

)

= 1

Next we need m-th roots for any positive real number.
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Theorem 1.3. Let x ≥ 0 be a positive real number and let n ≥ 1 be an
integer. Then the set R := {y ∈ R : y ≥ 0, yn ≤ x} is not empty and
bounded above.

Proof. 0 ∈ R, so R is not empty. To find upper bounds for R we will
look at two cases: x > 1 and x ≤ 1.

Let us start with x > 1. Then x itself is an upper bound because
any y > x would have yn > x.

For x ≤ 1 we find that 1 is an upper bound because if y > 1 then
yn > 1 ≥ x, which is a contradiction.

Because of completeness we know that sup(R) exists. We will de-
note x

1
n := sup(R). We still have a little work to do. We are only going

to prove properties of x
1
n necessary for our inequality problem.

Theorem 1.4.

(i) (x
1
n )n = x

(ii) x
1
n ≥ 0

(iii) x1 > x2 ⇔ x
1
n
1 > x

1
n
2

(iv) (x
1
n )

1
m = x

1
mn

Proof. For notational simplicity, we define z := x
1
n = sup(R).

For (i) we prove by contradiction that zn < x and zn > x are impos-
sible.

First assume zn < x. Then x − zn > 0. For any small 0 < ϵ < 1 we
have:

(z + ϵ)n =
n

∑
i=0

(
n
i

)
ϵizn−i

= zn +
n

∑
i=1

(
n
i

)
ϵizn−i

= zn + ϵ
n

∑
i=1

(
n
i

)
ϵi−1zn−i

Since ϵ < 1 we can replace all the ϵi−1 in the sum with 1 to get the
inequality:

(z + ϵ)n ≤ zn + ϵ
n

∑
i=1

(
n
i

)
zn−i

We have the identity:

n

∑
i=1

(
n
i

)
zn−i = zn+1 − zn
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so our inequality becomes:

(z + ϵ)n ≤ zn + ϵ(zn+1 − zn)

Now choose ϵ such that

ϵ <
x − zn

zn+1 − zn

and we have

(z + ϵ)n ≤ zn + ϵ(zn+1 − zn)

< zn + (
x − zn

zn+1 − zn )(z
n+1 − zn)

= zn + x − zn = x

This means that (z + ϵ)n ∈ R but z + ϵ > z = sup(R), a contradic-
tion. So zn cannot be smaller than x.

Next assume zn > x. Then zn − x > 0. We proceed similarly to the
previous case. For any small 0 < ϵ < 1 we have:

(z − ϵ)n =
n

∑
i=0

(
n
i

)
(−1)iϵizn−i

= zn +
n

∑
i=1

(
n
i

)
(−1)iϵizn−i

= zn − ϵ
n

∑
i=1

(
n
i

)
(−1)i−1ϵi−1zn−i

Since ϵ < 1 we can replace all the ϵi−1 in the sum with 1 to get the
inequality:

(z − ϵ)n ≥ zn − ϵ
n

∑
i=1

(
n
i

)
zn−i

≥ zn − ϵ(zn+1 − zn)

Again choose ϵ such that

ϵ <
zn − x

zn+1 − zn

(z − ϵ)n ≥ zn − ϵ(zn+1 − zn)

> zn − (
zn − x

zn+1 − zn )(z
n+1 − zn)

= zn + x − zn = x
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Because z − ϵ < z there must exist y ∈ R such that z − ϵ < y. We
then have

x < (z − ϵ)n < yn ≤ x

which is a contradiction. So zn cannot be greater than x either. The
only possibility left is zn = x.

Both (ii) and (iii) follow from the identity:

(an − bn) = (a − b)(
n−1

∑
i=0

an−1−ibi)

For (iv) we raise both sides to the power of mn:

((x
1
n )

1
m )mn = (((x

1
n )

1
m )m)n

= (x
1
n )n

= x

= (x
1

mn )mn

We are almost ready to define exponentiation by a positive rational
exponents. We need one more theorem:

Theorem 1.5. Given p, q, p′, q′ ∈ N such that pq′ = p′q and with any real
number x > 0 we have

(x
1
q )p = (x

1
q′ )p′

Proof. We have pq′ = p′q. We define y = x
1

pq′ = x
1

p′q .
We know from equality (iv) in theorem 1.4 that

y = (x
1
q′ )

1
p = (x

1
q )

1
p′

so

yp = x
1
q′ , and yp′ = x

1
q

We then have

(x
1
q )p = (yp′)p = (yp)p′ = (x

1
q′ )p′

We can now define exponentiation by r ∈ Q, r > 0. Let r = p
q and

x > 0. Then xr := (x
1
q )p and we know this is well defined.
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We are ready to prove the Bernoulli inequality for rational expo-
nents.

The exponent r = p
q is greater than one, so p > q.

We know from theorem 1.2 that en is increasing, so:

(1 +
x
p
)p > (1 +

x
q
)q

We choose x = ap and have:

(1 + a)p > (1 + ar)q

We take the q-th root and we know from property (iii) of theorem
1.4 that

(1 + a)r > 1 + ar

which proves the Bernoulli inequality for rational exponents. We
cannot prove it yet for any real exponent without resorting to limits
which forces us to lose the inequality strictness. Instead let us close
this note with three applications of the Bernoulli inequality3. 3 Exercises 1.19 and 1.20 on page 10 in

N.L. Carothers. Real Analysis. Cam-
bridge University Press, 2000. ISBN
9780521497565. URL https://books.

google.com/books?id=4VFDVy1NFiAC

Theorem 1.6. For 0 < c < 1 we have cn → 0.

Proof.

1
cn = (

1
c
)n

> 1 + n(
1
c
− 1)

> n(
1
c
− 1)

so

0 < cn <
1
n

c
1 − c

and cn is being squeezed into converging to zero.

Theorem 1.7. For c > 0 we have n
√

c → 1.

Proof. We have two cases: c ≥ 1 and c < 1. Let us first deal with c ≥ 1:

( n
√

c)n > 1 + n( n
√

c − 1)

c − 1 > n( n
√

c − 1)
c − 1

n
+ 1 > n

√
c ≥ 1

and n
√

c is squeezed into converging to one.

For the case c < 1 we consider its reciprocal n
√

1
c and the result

follows from the previous case.

https://books.google.com/books?id=4VFDVy1NFiAC
https://books.google.com/books?id=4VFDVy1NFiAC
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Theorem 1.8. For ai > 0, 1 ≤ i ≤ n we have4 4 This is known as the AGM inequality,
or Arithmetic Geometric Mean inequal-
ity.

n

√
n

∏
i=1

ai ≤
1
n

n

∑
i=1

ai

Proof. We are going to use Bernoulli and induction (as the exercise
hint suggests). For n = 2 we have

√
a1a2 ≤ 1

2
(a1 + a2)

⇔ a1a2 ≤ 1
4
(a2

1 + 2a1a2 + a2
2)

⇔ 4a1a2 ≤ a2
1 + 2a1a2 + a2

2

⇔ 0 ≤ (a1 − a2)
2

This takes care of the base case. For the induction step we assume
AGM holds for n. We introduce some notation to simplify our expres-
sions: sn := ∑n

i=1 ai, ān := sn
n , pn := ∏n

i=1 ai and finally ḡn := n
√

pn.
We assume ḡn ≤ ān and have to prove ḡn+1 ≤ ān+1.
We consider ( ān+1

ān
)n+1 and have:

(
ān+1

ān
)n+1 = (

n
n + 1

sn+1

sn
)n+1

> 1 + (n + 1)(
n

n + 1
sn+1

sn
− 1)

= 1 + (n + 1)
nsn+1 − nsn − sn

(n + 1)sn

= 1 +
nan+1 − sn

sn

=
nan+1

sn

=
an+1

ān

so

(ān+1)
n+1 > an+1(ān)

n ≥ an+1 pn = pn+1

which concludes the induction step and proves AGM.
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