
Airplane seating

Problem

A line of n airline passengers is waiting to board a plane. They
each hold a ticket to one of the n seats on that flight. (For
convenience, let’s say that the ith passenger in line has a ticket
for the seat number i.) Unfortunately, the first person in line is
crazy, and will ignore the seat number on their ticket, picking
a random seat to occupy. All of the other passengers are quite
normal, and will go to their proper seat unless it is already
occupied. If it is occupied they will then find a free seat to sit
in, at random. What is the probability that the last (nth) person
to board the plane will sit in their proper seat (#n)?

Any seat arrangement under the rules of the problem is a permuta-
tion π from the set Sn of permutations of size n. Let’s define An ⊆ Sn

the subset of permutations of size n that are valid seat arrangements.
Let Bn := {π ∈ An : π(n) = n} be the subset of An where the last

person gets their proper seat. A strategy to solve the problem would be
to count |An| and |Bn| and then divide them up to get the probability.

We will use the permutation cycle notation (i1, i2, . . . , ik) for a cycle
of length k that maps i1 7→ i2 7→ . . . ik 7→ i1. Also let ιn be the identity
permutation in Sn and let A∗

n = An \ {ιn} and B∗
n = Bn \ {ιn}.

Let’s characterize permutations in A∗
n.

Lemma 1.1. A permutation π ∈ A∗
n is a cycle of the form

π = (1, i1, i2, . . . , ik) with 2 ≤ i1 < i2 < . . . < ik ≤ n

Proof. Consider π ∈ A∗
n. Suppose π(1) = 1 then under the rules of the

problem all other passengers can occupy their seat and π = ιn which
is a contradiction because A∗

n doesn’t have the identity permutation.
So there exists a i1 ∈ {2, . . . , n} with π(1) = i1. i1 cannot map to
any j < i1 because under the rules of the problem every j < i1 maps
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to itself (every j < i1 finds their seat unoccupied so they take it). So
there exists a i2 ∈ {2, . . . , n} with i2 > i1 and i1 7→ i2. And so on.
This means that π has at least the cycle (1, i1, i2, . . . , ik) with 2 ≤ i1 <

i2 < . . . < ik ≤ n. It cannot have any other cycles that don’t have
1 in them because under the rules of the problem only passenger 1
can start a seat rearrangement and all passengers not affected by that
rearrangement will occupy their seat.

Definition 1.2. Let 2{2,...,n} be the set of all subsets of {2, . . . , n}. The
function φ : 2{2,...,n} → Sn is defined as:

φ(⊘) = ιn

φ({i1, i2, . . . , ik}) = (1, i1, i2, . . . , ik)

assuming 2 ≤ i1 < i2 < . . . < ik ≤ n

φ is a valid function because for each subset there is only one cycle
possible with the monotonically increasing ordering. From lemma 1.1
it then follows that φ(2{2,...,n}) = An, so |An| = 2n−1.

For Bn we apply the same arguments, except we take out the n-th
passenger. A permutation π′ ∈ B∗

n is a cycle of the form

π′ = (1, i1, i2, . . . , ik) with 2 ≤ i1 < i2 < . . . < ik ≤ n − 1

and there is a function φ′ defined as

φ′(⊘) = ιn

φ′({i1, i2, . . . , ik}) = (1, i1, i2, . . . , ik)

assuming 2 ≤ i1 < i2 < . . . < ik ≤ n − 1

that defines a bijection from 2{2,...,n−1} to Bn. It means that |Bn| =
2n−2 for n ≥ 2.

So the probability that the last (nth) person to board the plane will
sit in their proper seat is |Bn |

|An | = 0.5 for n ≥ 2.


